Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2022
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coastal environmental and atmospheric data reduction in the Southern North Sea supporting ecological impact studies

Authors: Lőrinc Mészáros; Lőrinc Mészáros; Frank van der Meulen; Geurt Jongbloed; Ghada El Serafy; Ghada El Serafy;

Coastal environmental and atmospheric data reduction in the Southern North Sea supporting ecological impact studies

Abstract

Coastal climate impact studies make increasing use of multi-source and multi-dimensional atmospheric and environmental datasets to investigate relationships between climate signals and the ecological response. The large quantity of numerically simulated data may, however, include redundancy, multi-colinearity and excess information not relevant to the studied processes. In such cases techniques for feature extraction and identification of latent processes prove useful. Using dimensionality reduction techniques this research provides a statistical underpinning of variable selection to study the impacts of atmospheric processes on coastal chlorophyll-a concentrations, taking the Dutch Wadden Sea as case study. Dimension reduction techniques are applied to environmental data simulated by the Delft3D coastal water quality model, the HIRLAM numerical weather prediction model and the Euro-CORDEX climate modelling experiment. The dimension reduction techniques were selected for their ability to incorporate (1) spatial correlation via multi-way methods (2), temporal correlation through Dynamic Factor Analysis, and (3) functional variability using Functional Data Analysis. The data reduction potential and explanatory value of these methods are showcased and important atmospheric variables affecting the chlorophyll-a concentration are identified. Our results indicate room for dimensionality reduction in the atmospheric variables (2 principle components can explain the majority of variance instead of 7 variables), in the chlorophyll-a time series at different locations (two characteristic patterns can describe the 10 locations), and in the climate projection scenarios of solar radiation and air temperature variables (a single principle component function explains 77% of the variation for solar radiation and 57% of the variation for air temperature). It was also found that solar radiation followed by air temperature are the most important atmospheric variables related to coastal chlorophyll-a concentration, noting that regional differences exist, for instance the importance of air temperature is greater in the Eastern Dutch Wadden Sea at Dantziggat than in the Western Dutch Wadden Sea at Marsdiep Noord. Common trends and different regional system characteristics have also been identified through dynamic factor analysis between the deeper channels and the shallower intertidal zones, where the onset of spring blooms occurs earlier. The functional analysis of climate data showed clusters of atmospheric variables with similar functional features. Moreover, functional components of Euro-CORDEX climate scenarios have been identified for radiation and temperature variables, which provide information on the dominant mode (pattern) of variation and its uncertainties. The findings suggest that radiation and temperature projections of different Euro-CORDEX scenarios share similar characteristics and mainly differ in their amplitudes and seasonal patterns, offering opportunities to construct statistical models that do not assume independence between climate scenarios but instead borrow information (“borrow strength”) from the larger pool of climate scenarios. The presented results were used in follow up studies to construct a Bayesian stochastic generator to complement existing Euro-CORDEX climate change scenarios and to quantify climate change induced trends and uncertainties in phytoplankton spring bloom dynamics in the Dutch Wadden Sea.

Country
Netherlands
Keywords

Science, Q, General. Including nature conservation, geographical distribution, QH1-199.5, 333, coastal environment, multivariate analysis, climate change, eutrophication, phytoplankton, dimensionality reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 3
  • 4
    views
    3
    downloads
    Data sourceViewsDownloads
    TU Delft Repository43
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
4
3
gold