

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
High Temperature and Humidity Affect Pollen Viability and Longevity in Olea europaea L.

handle: 11588/880228
Olea europaea L. is a crop typical of the Mediterranean area that has an important role in economy, society, and culture of this region. Climate change is expected to have significant impact on this crop, which is typically adapted to certain pedo-climatic characteristics of restricted geographic areas. In this scenario, the aim of this study was to evaluate the time-course response of pollen viability to different combinations of temperature and humidity. The study was performed comparing flowering time and pollen functionality of O. europaea from twelve cultivars growing at the same site belonging to the Campania olive collection in Italy. Pollen was incubated at 12 °C, 22 °C, and 36 °C in combination with 50% RH or 100% RH treatments for 5 days. The results highlighted that a drastic loss of pollen viability occurs when pollen is subjected to a combination of high humidity and high temperature, whereas 50% RH had less impact on pollen thermotolerance, because most cultivars preserved a high pollen viability over time. In the ongoing climate change scenario, it is critical to assess the effect of increasing temperatures on sensitive reproductive traits such as pollen viability to predict possible reduction in crop yield. Moreover, the results highlighted that the effect of temperature increase on pollen thermotolerance should be evaluated in combination with other environmental factors such as humidity conditions. The screening of olive cultivars based on pollen thermotolerance is critical in the ongoing climate change scenario, especially considering that the economic value of this species relies on successful fertilization and embryo development, and also that production cycle of Olea europaea can be longer than a hundred years.
- University Federico II of Naples Italy
- National Institute for Nuclear Physics Italy
- University of Pavia Italy
- VIA University College Denmark
- VIA University College Denmark
climate change; germplasm; olive; pollen viability; pollen functionality, S, Olive, Agriculture, germplasm, pollen viability, Pollen functionality, Pollen viability, olive, pollen functionality, climate change, Germplasm, Climate change; Germplasm; Olive; Pollen functionality; Pollen viability, Climate change, Agronomy and Crop Science
climate change; germplasm; olive; pollen viability; pollen functionality, S, Olive, Agriculture, germplasm, pollen viability, Pollen functionality, Pollen viability, olive, pollen functionality, climate change, Germplasm, Climate change; Germplasm; Olive; Pollen functionality; Pollen viability, Climate change, Agronomy and Crop Science
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 1 - 1views
Data source Views Downloads ZENODO 1 0

