
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of a Coastal Offshore Wind Climate by Means of Mesoscale Model Simulations Considering High-Resolution Land Use and Sea Surface Temperature Data Sets

In this study, offshore wind climate assessments are carried out by using mesoscale model Weather Research and Forecasting (WRF) and validated by measurement at a demonstration site located 3.1 km offshore of Choshi. An optimal nudging method is investigated by using offshore and meteorological observations. The land-use datasets are then created from a higher-resolution land-use data by using a maximum area sampling scheme according to the horizontal resolution of the mesoscale model. Finally, the sea surface temperature datasets are corrected by observation data. It is found that the relative error of annual wind speed is reduced from 7.3% to 2.2% and the correlation coefficient between predicted and measured wind speed is improved from 0.80 to 0.84 by considering the effects of land-use and sea surface temperature.
- University of Tokyo Japan
mesoscale model, land-use data, sea surface temperature, Meteorology. Climatology, nudging, QC851-999, wind speed
mesoscale model, land-use data, sea surface temperature, Meteorology. Climatology, nudging, QC851-999, wind speed
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
