
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Monitoring the Dynamic Changes in Vegetation Cover Using Spatio-Temporal Remote Sensing Data from 1984 to 2020

Anthropogenic activities and natural climate changes are the central driving forces of global ecosystems and agriculture changes. Climate changes, such as rainfall and temperature changes, have had the greatest impact on different types of plant production around the world. In the present study, we investigated the spatiotemporal variation of major crops (cotton, rice, wheat, and sugarcane) in the District Vehari, Pakistan, from 1984 to 2020 using remote sensing (RS) technology. The crop identification was pre-processed in ArcGIS software based on Landsat images. After pre-processing, supervised classification was used, which explains the maximum likelihood classification (MLC) to identify the vegetation changes. Our results showed that in the study area cultivated areas under wheat and cotton decreased by almost 5.4% and 9.1% from 1984 to 2020, respectively. Vegetated areas have maximum values of NDVI (>0.4), and built-up areas showed fewer NDVI values (0 to 0.2) in the District Vehari. During the Rabi season, the temperature was increased from 19.93 °C to 21.17 °C. The average temperature was calculated at 34.28 °C to 35.54 °C during the Kharif season in the District Vehari. Our results showed that temperature negatively affects sugarcane, rice, and cotton crops during the Rabi season, and precipitation positively affects sugarcane, rice, and cotton crops during the Kharif season in the study area. Accurate and timely assessment of crop estimation and relation to climate change can give very useful information for decision-makers, governments, and planners in formulating policies regarding crop management and improving agriculture yields.
- University of the West of Scotland United Kingdom
- State Key Laboratory of Water Resources and Hydropower Engineering Science China (People's Republic of)
- Aerospace Information Research Institute China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
- Al Azhar University Egypt
normalized difference vegetation index, GIS, climate change; GIS; normalized difference vegetation index; Southern Punjab; remote sensing, Southern Punjab, remote sensing, climate change, Meteorology. Climatology, QC851-999
normalized difference vegetation index, GIS, climate change; GIS; normalized difference vegetation index; Southern Punjab; remote sensing, Southern Punjab, remote sensing, climate change, Meteorology. Climatology, QC851-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
