Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2019
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Investigation into the Acoustic Emissions of Internal Combustion Engines with Modelling and Wavelet Package Analysis for Monitoring Lubrication Conditions

Authors: Nasha Wei; James Xi Gu; Fengshou Gu; Zhi Chen; Guoxing Li; Tie Wang; Andrew D. Ball;

An Investigation into the Acoustic Emissions of Internal Combustion Engines with Modelling and Wavelet Package Analysis for Monitoring Lubrication Conditions

Abstract

Online monitoring of the lubrication and friction conditions in internal combustion engines can provide valuable information and thereby enables optimal maintenance actions to be undertaken to ensure safe and efficient operations. Acoustic emission (AE) has attracted significant attention in condition monitoring due to its high sensitivity to light defects on sliding surfaces. However, limited understanding of the AE mechanisms in fluid-lubricated conjunctions, such as piston rings and cylinder liners, confines the development of AE-based lubrication monitoring techniques. Therefore, this study focuses on developing new AE models and effective AE signal process methods in order to achieve accurate online lubrication monitoring. Based on the existing AE model for asperity–asperity collision (AAC), a new model for fluid–asperity shearing (FAS)-induced AE is proposed that will explain AE responses from the tribological conjunction of the piston ring and cylinder. These two AE models can then jointly demonstrate AE responses from the lubrication conjunction of engine ring–liner. In particular, FAS allows the observable AE responses in the middle of engine strokes to be characterised in association with engine speeds and lubricant viscosity. However, these AE components are relatively weak and noisy compared to others, with movements such as valve taring, fuel injection and combustions. To accurately extract these weaker AE’s for lubricant monitoring, an optimised wavelet packet transform (WPT) analysis is applied to the raw AE data from a running engine. This results in four distinctive narrow band indicators to describe the AE amplitude in the middle of an engine power stroke. Experimental evaluation shows the linear increasing trend of AE indicator with engine speeds allows a full separation of two baseline engine lubricants (CD-10W30 and CD-15W40), previously unused over a wide range of speeds. Moreover, the used oil can also be diagnosed by using the nonlinear and unstable behaviours of the indicator at various speeds. This model has demonstrated the high performance of using AE signals processed with the optimised WPT spectrum in monitoring the lubrication conditions between the ring and liner in IC engines.

Keywords

Technology, Wavelet Packet Transform Spectrum, Tribological Acoustic Emission Models, T, Lubrication Monitoring, Acoustic Emission

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Top 10%
Top 10%
gold