Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure

Authors: Izabela Wolak; Małgorzata Czatzkowska; Monika Harnisz; Jan Paweł Jastrzębski; Łukasz Paukszto; Paulina Rusanowska; Ewa Felis; +1 Authors

Metagenomic Analysis of the Long-Term Synergistic Effects of Antibiotics on the Anaerobic Digestion of Cattle Manure

Abstract

The conversion of cattle manure into biogas in anaerobic digestion (AD) processes has been gaining attention in recent years. However, antibiotic consumption continues to increase worldwide, which is why antimicrobial concentrations can be expected to rise in cattle manure and in digestate. This study examined the long-term synergistic effects of antimicrobials on the anaerobic digestion of cattle manure. The prevalence of antibiotic resistance genes (ARGs) and changes in microbial biodiversity under exposure to the tested drugs was investigated using a metagenomic approach. Methane production was analyzed in lab-scale anaerobic bioreactors. Bacteroidetes, Firmicutes, and Actinobacteria were the most abundant bacteria in the samples. The domain Archaea was represented mainly by methanogenic genera Methanothrix and Methanosarcina and the order Methanomassiliicoccales. Exposure to antibiotics inhibited the growth and development of methanogenic microorganisms in the substrate. Antibiotics also influenced the abundance and prevalence of ARGs in samples. Seventeen types of ARGs were identified and classified. Genes encoding resistance to tetracyclines, macrolide–lincosamide–streptogramin antibiotics, and aminoglycosides, as well as multi-drug resistance genes, were most abundant. Antibiotics affected homoacetogenic bacteria and methanogens, and decreased the production of CH4. However, the antibiotic-induced decrease in CH4 production was minimized in the presence of highly drug-resistant microorganisms in AD bioreactors.

Keywords

anaerobic digestion, Technology, T, cattle manure, antibiotics, synergistic effect, anaerobic digestion; antibiotics; biodiversity; cattle manure; synergistic effect, biodiversity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold