Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energies
Article . 2013
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins

Authors: Jacek Majorowicz; Kirk Osadetz; Jan Safanda;

Methane Gas Hydrate Stability Models on Continental Shelves in Response to Glacio-Eustatic Sea Level Variations: Examples from Canadian Oceanic Margins

Abstract

We model numerically regions of the Canadian continental shelves during successive glacio-eustatic cycles to illustrate past, current and future marine gas hydrate (GH) stability and instability. These models indicated that the marine GH resource has dynamic features and the formation age and resource volumes depend on the dynamics of the ocean-atmosphere system as it responds to both natural (glacial-interglacial) and anthropogenic (climate change) forcing. Our models focus on the interval beginning three million years ago (i.e., Late Pliocene-Holocene). They continue through the current interglacial and they are projected to its anticipated natural end. During the current interglacial the gas hydrate stability zone (GHSZ) thickness in each region responded uniquely as a function of changes in water depth and sea bottom temperature influenced by ocean currents. In general, the GHSZ in the deeper parts of the Pacific and Atlantic margins (≥1316 m) thinned primarily due to increased water bottom temperatures. The GHSZ is highly variable in the shallower settings on the same margins (~400–500 m). On the Pacific Margin shallow GH dissociated completely prior to nine thousand years ago but the effects of subsequent sea level rise reestablished a persistent, thin GHSZ. On the Atlantic Margin Scotian Shelf the warm Gulf Stream caused GHSZ to disappear completely, whereas in shallow water depths offshore Labrador the combination of the cool Labrador Current and sea level rise increased the GHSZ. If future ocean bottom temperatures remain constant, these general characteristics will persist until the current interglacial ends. If the sea bottom warms, possibly in response to global climate change, there could be a significant reduction to complete loss of GH stability, especially on the shallow parts of the continental shelf. The interglacial GH thinning rates constrain rates at which carbon can be transferred between the GH reservoir and the atmosphere-ocean system. Marine GH can destabilize much more quickly than sub-permafrost terrestrial GHs and this combined with the immense marine GH reservoir suggests that GH have the potential to affect the climate-ocean system. Our models show that GH stability reacts quickly to water column pressure effects but slowly to sea bottom temperature changes. Therefore it is likely that marine GH destabilization was rapid and progressive in response to the pressure effects of glacial eustatic sea level fall. This suggests against a catastrophic GH auto-cyclic control on glacial-interglacial climate intervals. It is computationally possible but, unfortunately in no way verifiably, to analyze the interactions and impacts that marine GHs had prior to the current interglacial because of uncertainties in temperature and pressure history constraints. Thus we have the capability, but no confidence that we can contribute currently to questions regarding the relationships among climate, glacio-eustatic sea level fluctuations and marine GH stability without improved local temperature and water column histories. We infer that the possibility for a GH control on climate or oceanic cycles is speculative, but qualitatively contrary to our model results.

Keywords

marine gas hydrates (GH), Technology, marine gas hydrates (GH); GH stability; Canadian shelf; climate change influence, T, Canadian shelf, GH stability, climate change influence, jel: jel:Q0, jel: jel:Q4, jel: jel:Q40, jel: jel:Q, jel: jel:Q43, jel: jel:Q42, jel: jel:Q41, jel: jel:Q48, jel: jel:Q47, jel: jel:Q49

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold