
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predicting the Habitat Suitability of Melaleuca cajuputi Based on the MaxEnt Species Distribution Model

doi: 10.3390/f12111449
Predicting the Habitat Suitability of Melaleuca cajuputi Based on the MaxEnt Species Distribution Model
Gelam tree or Melaleuca cajuputi (M. cajuputi) is an important species for the local economy as well as coastal ecosystem protection in Terengganu, Malaysia. This study aimed at producing a current habitat suitability map and predicting future potential habitat distribution for M. cajuputi in Terengganu based on Species distribution modeling (SDM) using the Maximum Entropy principle. Our modeling results show that for the current potential distribution of M. cajuputi species, only 10.82% (1346.5 km2) of Terengganu area is suitable habitat, which 0.96% of the areas are under high, 2.44% moderate and 7.42% poor habitat suitability. The model prediction for future projection shows that the habitat suitability for M. cajuputi would decrease significantly in the year 2050 under RCP 4.5 where the largest contraction from suitable to unsuitable habitat area is about 442.1 km2 and under RCP 2.6 is the highest expansion from unsuitable to suitable habitat area (267.5 km2). From the future habitat suitability projection, we found that the habitat suitability in Marang would degrade significantly under all climate scenarios, while in Setiu the habitat suitability for M. cajuputi remains stable throughout the climate change scenarios. The modeling prediction shows a significant influence on the soil properties, temperature, and precipitation during monsoon months. These results could benefit conservationist and policymakers for decision making. The present model could also give a perception into potential habitat suitability of M. cajuputi in the future and to improve our understanding of the species’ response under the changing climate.
- Universiti Teknologi MARA Malaysia
- Tokyo Metropolitan University Japan
- Universiti Teknologi MARA Malaysia
- Tokyo Metropolitan University Japan
- Universiti Malaysia Terengganu Malaysia
habitat suitability, G Geography (General), TA Engineering (General). Civil engineering (General), 910, HD Industries. Land use. Labor, climate change, soil properties, species distribution, S Agriculture (General), <i>Melaleuca cajuputi</i>, Maxent, QK900-989, Plant ecology
habitat suitability, G Geography (General), TA Engineering (General). Civil engineering (General), 910, HD Industries. Land use. Labor, climate change, soil properties, species distribution, S Agriculture (General), <i>Melaleuca cajuputi</i>, Maxent, QK900-989, Plant ecology
2 Research products, page 1 of 1
- 2014IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).47 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
