
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-Scale Hydrologic Sensitivity to Climatic and Anthropogenic Changes in Northern Morocco

Natural and human-induced impacts on water resources across the globe continue to negatively impact water resources. Characterizing the hydrologic sensitivity to climatic and anthropogenic changes is problematic given the lack of monitoring networks and global-scale model uncertainties. This study presents an integrated methodology combining satellite remote sensing (e.g., GRACE, TRMM), hydrologic modeling (e.g., SWAT), and climate projections (IPCC AR5), to evaluate the impact of climatic and man-made changes on groundwater and surface water resources. The approach was carried out on two scales: regional (Morocco) and watershed (Souss Basin, Morocco) to capture the recent climatic changes in precipitation and total water storage, examine current and projected impacts on total water resources (surface and groundwater), and investigate the link between climate change and groundwater resources. Simulated (1979–2014) potential renewable groundwater resources obtained from SWAT are ~4.3 × 108 m3/yr. GRACE data (2002–2016) indicates a decline in total water storage anomaly of ~0.019m/yr., while precipitation remains relatively constant through the same time period (2002–2016), suggesting human interactions as the major underlying cause of depleting groundwater reserves. Results highlight the need for further conservation of diminishing groundwater resources and a more complete understanding of the links and impacts of climate change on groundwater resources.
- Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences Germany
- Illinois State University United States
- University of Georgia Georgia
- Helmholtz Association of German Research Centres Germany
- Middle Tennessee State University United States
QE1-996.5, 550, Geology, 333, anthropogenic, remote sensing, climate change, groundwater
QE1-996.5, 550, Geology, 333, anthropogenic, remote sensing, climate change, groundwater
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
