Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Marine Sc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Marine Science and Engineering
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Determination of Current and Future Extreme Sea Levels at the Local Scale in Port-Bouët Bay (Côte d’Ivoire)

Authors: Marcel Kouakou; Frédéric Bonou; Kissao Gnandi; Eric Djagoua; Mouhamed Idrissou; Asaa Abunkudugu;

Determination of Current and Future Extreme Sea Levels at the Local Scale in Port-Bouët Bay (Côte d’Ivoire)

Abstract

The Port-Bouët Bay shoreline is threatened by extreme sea level (ESL) events, which result from the combination of storm tide, wave run-up, and sea level rise (SLR). This study provides comprehensive scenarios of current and future ESLs at the local scale along the bay to understand the evolution of the phenomenon and promote local adaptation. The methodological steps involve first reconstructing historical storm tide and wave run-up data using a hydrodynamic model (D-flow FM) and the empirical model of Stockdon et al. Second, the Generalized Pareto Distribution (GPD) model fitted to the Peaks-Over-Thresholds (POT) method is applied to the data to calculate extreme return levels. Third, we combine the extreme storm tide and wave run-up using the joint probability method to obtain the current ESLs. Finally, the current ESLs are integrated with recent SLR projections to provide future ESL estimates. The results show that the current ESLs are relatively high, with 100-year return levels of 4.37 m ± 0.51, 4.97 m ± 0.57, and 4.48 m ± 0.5 at Vridi, Petit-Bassam, and Sogefiha respectively. By end-century, under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the future SLR is expected to increase the current ESLs by 0.49 m, 0.62 m, and 0.84 m, respectively. This could lead to a more frequent occurrence of the current 100-year return period, happening once every 2 years by 2100, especially under SSP5-8.5. The developed SLR scenarios can be used to assess the potential coastal flood risk in the study area for sustainable and effective coastal management and planning.

Keywords

local scale analysis, climate change, Port-Bouët Bay, Naval architecture. Shipbuilding. Marine engineering, storm tide, VM1-989, extreme sea level, GC1-1581, sea-level rise, Oceanography

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold
Related to Research communities
Energy Research