
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Microbial Degradation of Different Hydrocarbon Fuels with Mycoremediation of Volatiles

Naturally occurring microorganisms in soil matrices play a significant role in overall hydrocarbon contaminant removal. Bacterial and fungal degradation processes are major contributors to aerobic remediation of surface contaminants. This study investigated degradation of conventional diesel, heating diesel fuel, synthetic diesel (Syntroleum), fish biodiesel and a 20% biodiesel/diesel blend by naturally present microbial communities in laboratory microcosms under favorable environmental conditions. Visible fungal remediation was observed with Syntroleum and fish biodiesel contaminated samples, which also showed the highest total hydrocarbon mineralization (>48%) during the first 28 days of the experiment. Heating diesel and conventional diesel fuels showed the lowest total hydrocarbon mineralization with 18–23% under favorable conditions. In concurrent experiments with growth of fungi suspended on a grid in the air space above a specific fuel with little or no soil, fungi were able to survive and grow solely on volatile hydrocarbon compounds as a carbon source. These setups involved negligible bacterial degradation for all five investigated fuel types. Fungal species able to grow on specific hydrocarbon substrates were identified as belonging to the genera of Giberella, Mortierella, Fusarium, Trichoderma, and Penicillium.
- Hungarian Academy of Sciences Hungary
- Library and Information Centre of the Hungarian Academy of Sciences Hungary
- Magyar Tudományos Akadémia Könyvtára (Library of the Hungarian Academy of Sciences) Hungary
- Magyar Tudományos Akadémia Könyvtára (Library of the Hungarian Academy of Sciences) Hungary
- Library and Information Centre of the Hungarian Academy of Sciences Hungary
QH301-705.5, biodiesel, fungal remediation, biodegradation, Article, QD04 Organic chemistry / szerves kémia, Biology (General), hydrocarbon degradation
QH301-705.5, biodiesel, fungal remediation, biodegradation, Article, QD04 Organic chemistry / szerves kémia, Biology (General), hydrocarbon degradation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
