Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Moleculesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecules
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quercetin-Rich Ethanolic Extract of Polygonum odoratum var Pakphai Leaves Decreased Gene Expression and Secretion of Pro-Inflammatory Mediators in Lipopolysaccharide-Induced Murine RAW264.7 Macrophages

Authors: Nittaya Chansiw; Sorraya Champakam; Pattranuch Chusri; Kanjana Pangjit; Somdet Srichairatanakool;

Quercetin-Rich Ethanolic Extract of Polygonum odoratum var Pakphai Leaves Decreased Gene Expression and Secretion of Pro-Inflammatory Mediators in Lipopolysaccharide-Induced Murine RAW264.7 Macrophages

Abstract

Polygonum odoratum var. Pakphai has been used in traditional Thai medicine for the treatment of flatulence and constipation and to relieve the inflammation caused by insect bites. Quercetin (Q), which is abundant in plant-based foods, has been found to exert anti-inflammatory properties. This study evaluated the anti-inflammatory activity of P. odoratum ethanolic extract in RAW264.7 macrophage cells. Leaves were extracted with 50% ethanol, phenolics and flavonoids were then analyzed using UHPLC-QTOF-MS and HPLC-DAD. RAW264.7 cells were induced with lipopolysaccharides (LPSs). They were then treated with the extract and prostaglandin E2 (PGE2), and interleukin-6 (IL-6) and tumor necrotic factor-alpha (TNF-α) concentrations were determined. Levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), IL-6 and TNF-α mRNAs were analyzed using qRT-PCR. Chemical analysis demonstrated that the extract was abundant with Q while also containing catechin, gallic acid, epicatechin gallate and coumarin. The extract increased the viability of RAW264.7 cells and dose-dependently decreased nitric oxide production, PGE2, IL-6 and TNF-α levels in the medium from the LPS-induced RAW264.7 cell culture. Consistently, COX-2, iNOS, IL-6 and TNF-α mRNA levels were decreased in a concentration-dependent manner (p < 0.05). Thus, the quercetin-rich ethanolic extract derived from P. odoratum var Pakphai leaves can exert anti-inflammatory activity in LPS-induced RAW264.7 cells through a reduction of the pro-inflammatory mediator response.

Keywords

Lipopolysaccharides, anti-inflammation; phenolics; <i>Polygonum odoratum</i>; pro-inflammatory mediators; quercetin; RAW264.7 cells, phenolics, Anti-Inflammatory Agents, Organic chemistry, Gene Expression, pro-inflammatory mediators, Nitric Oxide, Article, Dinoprostone, quercetin, RAW264.7 cells, Mice, QD241-441, Animals, Ethanol, Interleukin-6, Plant Extracts, Tumor Necrosis Factor-alpha, Macrophages, anti-inflammation, Plant Leaves, Cyclooxygenase 2, Quercetin, Polygonum, <i>Polygonum odoratum</i>, Inflammation Mediators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold
Related to Research communities
Energy Research