Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plantsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Other literature type . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Article
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Article . 2022
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil

Authors: Alaa El-Dein Omara; Emad M. Hafez; Hany S. Osman; Emadeldeen Rashwan; Mohamed A. A. El-Said; Khadiga Alharbi; Diaa Abd El-Moneim; +1 Authors

Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil

Abstract

Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions. Our findings showed that exposure of wheat plants to deficit irrigation in salt-affected soil inhibited wheat growth and development, and eventually reduced crop productivity. However, these injurious impacts were diminished after soil amendment using the combined application of compost and PGPR. This combined application enhanced soil urease and dehydrogenase, ion selectivity, chlorophylls, carotenoids, stomatal conductance, and the relative water content (RWC) whilst reducing ESP, proline content, which eventually increased the yield-related traits of wheat plants under deficient irrigation conditions. Moreover, the coupled application of compost and PGPR reduced the uptake of Na and resulted in an increment in superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) activities that lessened oxidative damage and improved the nutrient uptake (N, P, and K) of deficiently irrigated wheat plants under soil salinity. It was concluded that to protect wheat plants from environmental stressors, such as water stress and soil salinity, co-application of compost with PGPR was found to be effective.

Keywords

compost, antioxidant, plant growth promoting rhizobacteria, deficit irrigation, antioxidant; compost; deficit irrigation; drought; plant growth promoting rhizobacteria; sustainability; <i>Triticum aestivum</i>; yield, Botany, drought, sustainability, Article, QK1-989

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 1%
Green
gold