
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China

Agroforest systems have been widely recognized as an integrated approach to sustainable land use for addressing the climate change problem because of their greater potential to sequester atmospheric CO2 with multiple economic and ecological benefits. However, the nature and extent of the effects of an age-sequence of agroforestry systems on carbon (C) storage remain largely unknown. To reveal the influence of different aged poplar-crop systems on C stocks, we investigated the variation in biomass and C storage under four aged poplar-crop agroforest systems (3-, 9-, 13-, and 17-year-old) in the Henan province of China. The results showed that stand biomass increased with forest age, ranging from 26.9 to 121.6 t/ha in the corresponding four aged poplar-crop systems. The poplar tree biomass accounted for >80% of the total stand biomass in these poplar-crop agroforestry systems, except in the 3-year-old agroforestry system. The average stand productivity peaked in a 9-year-old poplar-crop system (11.8 t/ha/yr), the next was in 13- and 17-year-old agroforestry systems, and the minimum was found in 3-year-old poplar-crop stands (4.8 t/ha/yr). The total C stocks increased, with aging poplar-crop systems ranging from 99.7 to 189.2 t/ha in the studied agroforestry systems. The proportion of C stocks accounted for about 6, 25, and 69% of the total C stocks in the crop, poplar tree, and soil components in all studied agroforestry ecosystems, respectively. Our results suggested that the poplar-crop system, especially in productive and mature stages, is quite an effective agroforestry model to increase the study site’s biomass production and C stocks. This study highlighted the importance of agroforestry systems in C storage. It recommended the poplar-crop agroforest ecosystems as a viable option for sustainable production and C mitigation in the central region of China.
- Governors State University United States
- Bangor University United Kingdom
- Lewis University United States
- State Key Laboratory of Remote Sensing Science China (People's Republic of)
- Lewis University United States
productivity, QK1-989, Botany, land use, multi-aged stands, carbon storage, sustainability, Article, productivity; carbon storage; sustainability; land use; multi-aged stands
productivity, QK1-989, Botany, land use, multi-aged stands, carbon storage, sustainability, Article, productivity; carbon storage; sustainability; land use; multi-aged stands
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
