Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plantsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Article
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plants
Article . 2023
Data sources: DOAJ
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China

Authors: Zhong Wang; Wende Yan; Yuanying Peng; Meng Wan; Taimoor Hassan Farooq; Wei Fan; Junjie Lei; +4 Authors

Biomass Production and Carbon Stocks in Poplar-Crop Agroforestry Chronosequence in Subtropical Central China

Abstract

Agroforest systems have been widely recognized as an integrated approach to sustainable land use for addressing the climate change problem because of their greater potential to sequester atmospheric CO2 with multiple economic and ecological benefits. However, the nature and extent of the effects of an age-sequence of agroforestry systems on carbon (C) storage remain largely unknown. To reveal the influence of different aged poplar-crop systems on C stocks, we investigated the variation in biomass and C storage under four aged poplar-crop agroforest systems (3-, 9-, 13-, and 17-year-old) in the Henan province of China. The results showed that stand biomass increased with forest age, ranging from 26.9 to 121.6 t/ha in the corresponding four aged poplar-crop systems. The poplar tree biomass accounted for >80% of the total stand biomass in these poplar-crop agroforestry systems, except in the 3-year-old agroforestry system. The average stand productivity peaked in a 9-year-old poplar-crop system (11.8 t/ha/yr), the next was in 13- and 17-year-old agroforestry systems, and the minimum was found in 3-year-old poplar-crop stands (4.8 t/ha/yr). The total C stocks increased, with aging poplar-crop systems ranging from 99.7 to 189.2 t/ha in the studied agroforestry systems. The proportion of C stocks accounted for about 6, 25, and 69% of the total C stocks in the crop, poplar tree, and soil components in all studied agroforestry ecosystems, respectively. Our results suggested that the poplar-crop system, especially in productive and mature stages, is quite an effective agroforestry model to increase the study site’s biomass production and C stocks. This study highlighted the importance of agroforestry systems in C storage. It recommended the poplar-crop agroforest ecosystems as a viable option for sustainable production and C mitigation in the central region of China.

Related Organizations
Keywords

productivity, QK1-989, Botany, land use, multi-aged stands, carbon storage, sustainability, Article, productivity; carbon storage; sustainability; land use; multi-aged stands

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
gold