Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Polymersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymers
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymers
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrated Approach to Eco-Friendly Thermoplastic Composites Based on Chemically Recycled PET Co-Polymers Reinforced with Treated Banana Fibres

Authors: Martial Aime Kuete; Pascal Van Velthem; Wael Ballout; Bernard Nysten; Jacques Devaux; Maurice Kor Ndikontar; Thomas Pardoen; +1 Authors

Integrated Approach to Eco-Friendly Thermoplastic Composites Based on Chemically Recycled PET Co-Polymers Reinforced with Treated Banana Fibres

Abstract

A major societal issue of disposal and environmental pollution is raised by the enormous and fast-growing production of single-use polyethylene terephthalate (PET) bottles, especially in developing countries. To contribute to the problem solution, an original route to recycle PET in the form of value-added environmentally friendly thermoplastic composites with banana fibres (Musa acuminata) has been developed at the laboratory scale. Banana fibres are a so far undervalued by-product of banana crops with great potential as polymer reinforcement. The melt-processing constraints of commercial PET, including used bottles, being incompatible with the thermal stability limits use of natural fibres; PET has been modified with bio-sourced reactants to produce co-polymers with moderate processing temperatures below 200 °C. First, commercial PET were partially glycolyzed with 1.3-propanediol to produce co-oligomers of about 20 repeating units, which were next chain extended with succinic anhydride and post-treated in a very unusual “soft solid state” process at temperatures in the vicinity of the melting point to generate co-polymers with excellent ductility. The molar mass build-up reaction is dominated by esterification of the chain ends and benefits from the addition of succinic anhydride to rebalance the acid-to-hydroxyl end-group ratio. Infra-red spectroscopy and intrinsic viscosity were extensively used to quantify the concentration of chain ends and the average molar mass of the co-polymers at all stages of the process. The best co-polymers are crystallisable, though at slow kinetics, with a Tg of 48 °C and a melting point strongly dependent upon thermal history. The composites show high stiffness (4.8 GPa at 20% fibres), consistent with the excellent dispersion of the fibres and a very high interfacial cohesion. The strong adhesion can be tentatively explained by covalent bonding involving unreacted succinic anhydride in excess during solid stating. A first approach to quantify the sustainable benefits of this PET recycling route, based on a rational eco-selection method, gives promising results since the composites come close to low-end wood materials in terms of the stiffness/embodied energy balance. Moreover, this approach can easily be extended to many other natural fibres. The present study is limited to a proof of concept at the laboratory scale but is encouraging enough to warrant a follow-up study toward scale-up and application development.

Country
Belgium
Related Organizations
Keywords

Solid-state polymerisation, Organic chemistry, recycling, glycolysis, solid-state polymerisation, sustainability, Article, PET, QD241-441, Recycling, composite, PET; recycling; glycolysis; solid-state polymerisation; composite; sustainability, Glycolysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold