
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Physical Characterization and Terminal Velocities of Aluminium, Iron and Plastic Bottle Caps in a Water Environment

Aluminium, iron and plastic are materials which are extensively used at both industry and individual levels. However, significant amounts of aluminium, iron and plastic end up in the environment. Specifically, bottle caps made of these materials are often thrown away, with or without bottles, and appear among the common plastic debris entering the world’s oceans and beaches. More than 20 million bottle caps and lids have been identified during beach-cleaning campaigns over the last 30 years. To recover bottle caps from the shores, conventional technologies can be used. In this paper, the physical properties of used metal and plastic bottle caps were examined and related to the settling and rising velocities of the caps, as well as their drag coefficients and hydrodynamic modes in water environments, with respect to gravity separation. The sample contained aluminium, iron, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) bottle caps. The findings revealed that the density differences between the bottle caps resulted in the terminal settling velocities of aluminium and iron particles, which were significantly higher than the rising velocities of the plastic caps. The results allowed us to design a flowsheet for bottle cap recovery from beach coasts in order to reduce environmental impact and produce add-on plastic and metal products.
- NATIONAL UNIVERSITY OF SCIENCE ANDTECHNOLOGY MISIS Russian Federation
- NATIONAL UNIVERSITY OF SCIENCE ANDTECHNOLOGY MISIS Russian Federation
- University of Technology Russian Federation
- National University of Science and Technology Russian Federation
- National University of Science and Technology Russian Federation
LDPE, aluminium, aluminium; iron; plastic; HDPE; LDPE; polypropylene; bottle cap recycling; settling velocity; solid waste materials; gravity concentration; sink–float separation; sand shore, HDPE, Environmental sciences, iron, plastic, GE1-350, polypropylene
LDPE, aluminium, aluminium; iron; plastic; HDPE; LDPE; polypropylene; bottle cap recycling; settling velocity; solid waste materials; gravity concentration; sink–float separation; sand shore, HDPE, Environmental sciences, iron, plastic, GE1-350, polypropylene
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
