
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Application of Improved SWAT Model to Hydrological Cycle Study in Karst Area of South China

doi: 10.3390/su11185024
In the karst area of southern China, karst water is important for supporting the sustainable production and home living for the local residents. Consequently, it is of significance to fully understand the water cycle, so as to make full use of water resources. In karst areas, epikarst and conduits are developed, participating in the hydrological cycle actively. For conventional lumped hydrologic models, it is difficult to simulate the hydrological cycle accurately. These models neglect to consider the variation of underlying surface and weather change. Meanwhile, for the original distributed hydrological model, the existence of epikarst and underground conduits as well as inadequate data information also make it difficult to achieve accurate simulation. To this end, the framework combining the advantages of lumped model–reservoir model and distributed hydrologic model–Soil and Water Assessment Tool (SWAT) model is established to simulate the water cycle efficiently in a karst area. Xianghualing karst watershed in southern China was selected as the study area and the improved SWAT model was used to simulate the water cycle. Results show that the indicators of ENS and R2 in the calibration and verification periods are both above 0.8, which is evidently improved in comparison with the original model. The improved SWAT model is verified to have better efficiency in describing the hydrological cycle in a typical karst area.
- China University of Geosciences China (People's Republic of)
- Chinese Academy of Geological Sciences China (People's Republic of)
- China University of Geosciences China (People's Republic of)
- Chinese Academy of Meteorological Sciences China (People's Republic of)
- Institute of Karst Geology,Chinese Academy of Geological Science China (People's Republic of)
Environmental effects of industries and plants, karst area, TJ807-830, lumped hydrological model, improved SWAT model, TD194-195, Renewable energy sources, Environmental sciences, distributed hydrological model, GE1-350
Environmental effects of industries and plants, karst area, TJ807-830, lumped hydrological model, improved SWAT model, TD194-195, Renewable energy sources, Environmental sciences, distributed hydrological model, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
