
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea

doi: 10.3390/su12030939
Tropical cyclone (TC) translation speed is an important parameter. In the context of TC–ocean interaction, faster translation speed can contribute to less TC-induced ocean cooling and thus enables more air–sea enthalpy flux supply to favor TC intensification. In 2018, Kossin published an interesting paper in Nature, reporting a global slow-down of TC translation speed since the 1950s. However, upon close inspection, in the last two decades, TC translation speed actually increased over the western North Pacific (WNP) and neighboring seas. Thus, we are interested to see which sub-region in the WNP and neighboring seas had the largest increase during the last two decades, and whether such increases contribute to TC intensification. Our results found statistically significant translation speed increases (~0.8 ms−1 per decade) over the South China Sea. Ruling out other possible factors that may influence TC intensity (i.e., changes in atmospheric vertical wind shear, pre-TC sea surface temperature or subsurface thermal condition), we suggest, in this research, the possible contribution of TC translation speed increases to the observed TC intensity increases over the South China Sea in the last two decades (1998–2017).
translation speed, Environmental effects of industries and plants, tropical cyclone, TJ807-830, tc-ocean interaction, TD194-195, Renewable energy sources, Environmental sciences, TC-ocean interaction, GE1-350
translation speed, Environmental effects of industries and plants, tropical cyclone, TJ807-830, tc-ocean interaction, TD194-195, Renewable energy sources, Environmental sciences, TC-ocean interaction, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
