Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluating Sustainable Intensification of Groundnut Production in Northern Ghana Using the Sustainable Intensification Assessment Framework Approach

Authors: Nurudeen Abdul Rahman; Asamoah Larbi; Bekele Kotu; Fred Kizito; Irmgard Hoeschle-Zeledon;

Evaluating Sustainable Intensification of Groundnut Production in Northern Ghana Using the Sustainable Intensification Assessment Framework Approach

Abstract

The sustainable intensification of crop production system requires the efficient use of resources. A 3-year on-farm experiment was conducted to determine the sustainability of plant density for groundnut production in Northern Ghana using the sustainable intensification assessment framework (SIAF). The SIAF allows the assessment of the sustainable intensification potential of the agricultural system in five domains: productivity, economics, environment, human, and social. The experiment was laid out in a strip plot design with six groundnut varieties (early maturity type: Chinese, Yenyewoso, and Samnut 23, and late maturity type: Azivivi, Mani pinta, and Samnut 22) as the horizontal plot factor and four plant densities (22, 15, 11, and 9 plant/m2) as the vertical plot factor. Using the SIAF as a guide, data on grain and fodder yield (productivity), net income and benefit cost ratio (economic), vegetative cover at 30, 40, and 50 days after planting and harvesting and biological nitrogen fixation (environment), calorie and protein production (human), and technology rating by gender (social) were recorded to calculate the sustainability indices of the treatments. The results showed that the sustainability indices for the Yenyewoso and Mani pinta groundnut varieties were above 1 in all the regions, indicating that both groundnut maturity types are sustainable for cultivation in the Northern regions of Ghana. Planting both groundnut maturity types at a density of 22 plant/m2 increased the sustainability index threefold compared with the farmer practice (9 plant/m2) and 79% compared with the 11 and 15 plant/m2. This suggests that planting groundnut at a density of 22 plant/m2 will sustainably intensify groundnut production in Northern Ghana and similar agro-ecologies across West Africa.

Keywords

Environmental effects of industries and plants, plant density, TJ807-830, TD194-195, savanna, Renewable energy sources, <i>Arachis hypogeae</i>, Environmental sciences, GE1-350, SIAF

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold