

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Reuse of Filtering Facepiece Respirators in the COVID-19 Era

doi: 10.3390/su13020797
handle: 10067/1754120151162165141
The current COVID-19 pandemic has resulted in an immense and unforeseen increase in demand for personal protective equipment (PPE) for healthcare workers worldwide. Amongst other products, respirator masks are crucial to protect the users against transmission of the virus. Decontamination and reuse of the existing stock could be a solution to the shortage of new respirators. Based upon existing studies, it was found that (I) a solid quality control method is essential to test product reuse, (II) in-depth evaluation of the different parts of the filtering facepiece respirator (FFR) should be considered, and (III) communication of the reuse cycle is essential to take track of the amount of reuse, as this is limited to ensure quality. The goal of this paper is two-fold. First, we identify the impact of decontamination on the different parts of the FFRs and how the quality control should be performed. Two different types of FFRs are analysed within this paper, resulting in the recommendation of combining quantitative respirator mask fit testing with a thorough sensory evaluation of decontaminated FFRs to qualify them for reuse. Secondly, the possibilities of communication of this reuse to the eventual user are mapped through in-depth reasoning.
- University of Antwerp Belgium
- Delft University of Technology Netherlands
690, COVID19, TJ807-830, Reuse, TD194-195, Respirators, Renewable energy sources, respirators, GE1-350, quality control, Biology, product shortage, Environmental effects of industries and plants, Quality control, reuse, Environmental sciences, Chemistry, Human medicine, Product shortage, Engineering sciences. Technology
690, COVID19, TJ807-830, Reuse, TD194-195, Respirators, Renewable energy sources, respirators, GE1-350, quality control, Biology, product shortage, Environmental effects of industries and plants, Quality control, reuse, Environmental sciences, Chemistry, Human medicine, Product shortage, Engineering sciences. Technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 7 download downloads 4 - 7views4downloads
Data source Views Downloads TU Delft Repository 7 4


