Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Sunflower Meal Supplementation as a Complementary Protein Source in the Laying Hen’s Diet on Productive Performance, Egg Quality, and Nutrient Digestibility

Authors: Ahmed A. Saleh; Ahmed El-Awady; Khairy Amber; Yahya Z. Eid; Mohammed H. Alzawqari; Shaimaa Selim; Mohamed Mohamed Soliman; +1 Authors

Effects of Sunflower Meal Supplementation as a Complementary Protein Source in the Laying Hen’s Diet on Productive Performance, Egg Quality, and Nutrient Digestibility

Abstract

The practical usage of untraditional feedstuffs such as sunflower meal (SFM) in laying hens nutrition in developing countries has received considerable attention. SFM is a by-product of the sunflower oil industry and has been progressively added to bird’s diets. Sunflower meal (SFM) is gaining great interest as a feed ingredient due to its eminent crude protein content, low anti-nutritional compounds, and low price. The current experiment was aimed to assess the production efficiency, egg quality, yolk fatty acids composition, and nutrient digestibility of laying hens fed SFM. A total of 162 Bovans Brown laying hens aged 60 weeks old were randomly allocated using a completely randomized design into three experimental groups of nine replicates each (n = six/replicate) for eight weeks. The dietary treatments involved a control (basal diet) and two levels of SFM, 50 and 100 g/kg feed. The dietary treatments did not influence live weight gain, feed intake, and egg mass. On one hand, the laying rate was increased; on the other hand, the feed conversion ratio and broken eggs rate of laying hens were decreased (p < 0.05) by the dietary inclusion of SFM. Dietary treatments had no effect on the egg’s quality characteristics except the yolk color and yolk height were larger (p = 0.01) for laying hens fed SFM compared with those fed the control. Dietary inclusion of SFM decreased (p < 0.05) the content of cholesterol in the egg yolk. Still, it increased the yolk contents of vitamin E, calcium, linoleic acid, linolenic acid, and oleic acid (p < 0.05). Furthermore, the dietary inclusion of SFM increased crude protein and calcium digestibility, but decreased the ether extract digestibility. In conclusion, our results suggested that the dietary inclusion of SFM, up to 100 g/kg at a late phase of laying, could improve the production performance, some of the egg quality traits, and nutrient digestibility while decreasing egg yolk cholesterol.

Keywords

Environmental effects of industries and plants, laying hens, yolk cholesterol, egg quality, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, sunflower meal, yolk fatty acids, GE1-350, performance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
gold