Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Raising Climate-Resilient Embolden Rice (Oryza sativa L.) Seedlings during the Cool Season through Various Types of Nursery Bed Management

Authors: Mousumi Mondal; Benukar Biswas; Sourav Garai; Saju Adhikary; Prasanta Kumar Bandyopadhyay; Sukamal Sarkar; Hirak Banerjee; +7 Authors

Raising Climate-Resilient Embolden Rice (Oryza sativa L.) Seedlings during the Cool Season through Various Types of Nursery Bed Management

Abstract

Facing cold stress is amajor constraint in seedling production during the winter season as, most particularly in recent times due to uncertain climatic conditions, no sustainable technology has been reported that could be easily adopted by farmers withlimited resources. Therefore, field experiments were carried out during winter 2017–2018 and 2018–2019 at the Central Research Farm of Bidhan Chandra KrishiViswavidyalaya, West Bengal, India to study the growth, survival potential, yield and nutritional and biochemical properties of boro rice seedlings as influenced by two seedbed management practices viz. conventional seedbed (farmers’ practice) and improved seedbed (polythene protected with micronutrient supplementation). The major objective was to lower the nurserybed duration without compromising seedlings’ health and to studythe economic viability during the winter season. The experiment was laid out in ten experimental units and deployed anindependent-sample t-test to compare the performance of the seedlings. The microclimatic changes were also itemized from both seedbeds. The seeds sownunder improved nursery conditions resulted in better seedling emergence (~90%) and survival percentage (~85%) as compared to the conventional seedbed (~70% and 65%). Growth attributes in terms of plant height, biomass accumulation, root characteristics, tiller count, and growth rate were observed to be better from the polythene-protected nursery bed. Theimproved nursery bed accounted for 20% higher seedling count at the time of transplantation over the conventional bed. The microclimatic situation under a polythene covering was also favorable for germination and seedling growth. Maximum nutrient (N, P, and K) concentrations, as well as chlorophyll content, wererecorded from improved seedlings. Results suggested that the improved seedbed management was apotential alternative toearly embolden seedling production during the winter to avoid climatic abnormalities. Most importantly, improved seedbeds ensured a comprehensive route from germination to healthy seedling production without any failure in thesmalltime window, which involvedless input as well as cost involvement. This technique could diffusethe problem oflate sowing conditions in the rice–rice cropping system.

Keywords

polythene covering, soil temperature, Environmental effects of industries and plants, nutrient uptake, seedbed management, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, GE1-350, winterrice, polythene covering; seedbed management; winterrice; nutrient uptake; soil temperature

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold