
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Upcycling Systems Design, Developing a Methodology through Design

doi: 10.3390/su14020600
Design has an important role in shaping the modes of production, consumption and disposal. Decisions made early in the product, service and system development influence the majority of the environmental impact and social consequences. With sustainability emerging as the major challenge of our times, the creation of novel methodologies, economic models and innovative materials is critical. In this paper, we put forward a new methodology that aims to bridge the ecomodernist business-focused circular economy models with the expressive material driven design (MDD) approach. The ‘design out waste methodology’ (DOWM) bridges existing concepts, methods and practices, creating an innovative design and production process that redefines waste and sets it up as a subject of creative study. The purpose of this process is to help designers understand the importance of evaluating the entire life cycle of a product; it also enables local ‘degrowth’ by shifting our modes of production towards a human scale with local makers exchanging knowledge and expressing themselves through upcycled materials, while simultaneously eradicating the very concept of waste. The methodology has been developed in an iterative research-through-design process that combines experiential and tacit knowledge from local case studies with desk research of emerging case studies in MDD.
- University of the Aegean Greece
- University of the Aegean Greece
research through design, Environmental effects of industries and plants, circular economy; material driven design out waste methodology; research through design; DIY; upcycled materials, circular economy, TJ807-830, material driven design out waste methodology, TD194-195, Renewable energy sources, DIY, Environmental sciences, GE1-350, upcycled materials
research through design, Environmental effects of industries and plants, circular economy; material driven design out waste methodology; research through design; DIY; upcycled materials, circular economy, TJ807-830, material driven design out waste methodology, TD194-195, Renewable energy sources, DIY, Environmental sciences, GE1-350, upcycled materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
