
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Human Health and Ecosystem Quality Benefits with Life Cycle Assessment Due to Fungicides Elimination in Agriculture

doi: 10.3390/su14020846
Industrial agriculture results in environmental burdens due to the overuse of fertilizers and pesticides. Fungicides is a class of pesticides whose application contributes (among others) to human toxicity and ecotoxicity. The European Union aims to increase organic agriculture. For this reason, this work aims to analyze climate change, freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, (terrestrial) acidification, and freshwater eutrophication impacts of fungicides and calculate expected benefits to human health (per European citizen) and ecosystem quality (terrestrial) with life cycle assessment (LCA) during crop production. The Scopus database was searched for LCA studies that considered the application of fungicides to specific crops. The analysis shows how many systemic and contact fungicides were considered by LCA studies and what was the applied dosage. Furthermore, it shows that fungicides highly contribute to freshwater ecotoxicity, terrestrial ecotoxicity, human toxicity, and freshwater eutrophication for fruits and vegetables, but to a low extent compared to all considered environmental impacts in the case of cereals and rapeseed. Expected benefits to human health and ecosystem quality after fungicides elimination are greater for fruits and vegetables, ranging between 0 to 47 min per European citizen in a year and 0 to 90 species per year, respectively.
- Athena Research and Innovation Center In Information Communication & Knowledge Technologies Greece
- Athena Research and Innovation Center In Information Communication & Knowledge Technologies Greece
- "TECHNISCHE UNIVERSITEIT DELFT Netherlands
- Delft University of Technology Netherlands
- Delft University of Technology Netherlands
Environmental effects of industries and plants, disability adjusted life year, toxicity, TJ807-830, azoxystrobin, time-integrated species loss, conventional agriculture, TD194-195, Renewable energy sources, mancozeb, Environmental sciences, GE1-350
Environmental effects of industries and plants, disability adjusted life year, toxicity, TJ807-830, azoxystrobin, time-integrated species loss, conventional agriculture, TD194-195, Renewable energy sources, mancozeb, Environmental sciences, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
