Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity

Authors: Nuzhat Jamil; Sajjad Hyder; Mohammad Valipour; Muhammad Yasir; Rashid Iqbal; Rana Roy; Muhammad Umar Zafar; +1 Authors

Evaluation of the Bioremediation Potential of Staphlococcus lentus Inoculations of Plants as a Promising Strategy Used to Attenuate Chromium Toxicity

Abstract

Current industrial developments, advanced farming techniques, and further anthropogenic activities are adding substantial amounts of heavy metals into the ecosystem and having dangerous effects on lifeforms, including plants and animals, and changing their biological activities. Decontamination following the heavy metal contamination is an important point deserving attention in the current scenario. Among all the other approaches used for this purpose, bioremediation is ecofriendly and green approach that can be used to remediate heavy metal toxicity. In plant cells, the regulation of ionic homeostasis is a primary physiological prerequisite for upholding plant development, growth, and production. To avoid the dreadful effects of toxic heavy metal exposure, plants manifest physiological, biochemical, and structural responses. In the present research, we reported on the isolation and molecular identification of an effective heavy-metal-tolerant bacterial strain, Staphylococcus lentus (E3), having a minimum inhibitory concentration of 300 µg/mL for chromium, Cr, taken from soil polluted with industrial effluents at Kasur, Pakistan. Bacterial inoculations enhanced all the growth parameters of Triticum aestivum and Helianthus annus. To observe the physiological strain, the proline content and peroxidase (POD) activities were estimated under Cr stress in the bacterial-inoculated plants. The chlorophyll content and Cr uptake in the aerial parts the of plants were also studied, along with the overexpression of proteins. The bacterial inoculations produced encouraging results. Bioremediation using PGPR is an efficient, convincing, and reliable approach to attenuating heavy metal toxicity.

Keywords

heavy metal stress, <i>Triticum aestivum</i>, chromium toxicity, Environmental effects of industries and plants, TJ807-830, bacterial inoculants, TD194-195, Renewable energy sources, Environmental sciences, bacterial inoculants; bioremediation; heavy metal stress; chromium toxicity; <i>Triticum aestivum</i>; <i>Helianthus annus</i>; <i>Staphylococcus lentus</i>, bioremediation, GE1-350, <i>Helianthus annus</i>

Powered by OpenAIRE graph
Found an issue? Give us feedback