Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2022
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Roles of Medicinal Mushrooms as Natural Food Dyes and Dye-Sensitised Solar Cells (DSSC): Synergy of Zero Hunger and Affordable Energy for Sustainable Development

Authors: Ahmad, Nurfadzilah; Vunduk, Jovana; Klaus, Anita; Dahlan, Nofri; Ghosh, Soumya; Muhammad-Sukki, Firdaus; Dufossé, Laurent; +2 Authors

Roles of Medicinal Mushrooms as Natural Food Dyes and Dye-Sensitised Solar Cells (DSSC): Synergy of Zero Hunger and Affordable Energy for Sustainable Development

Abstract

In 2015, approximately 195 countries agreed with the United Nations that by 2030, they would work to make the world a better place. There would be synergies in accomplishing the 17 Sustainable Development Goals (SDGs). Synergy using a single sustainable resource is critical to assist developing nations in achieving the SDGs as cost-effectively and efficiently possible. To use fungal dye resources, we proposed a combination of the zero hunger and affordable energy goals. Dyes are widely used in high-tech sectors, including food and energy. Natural dyes are more environment-friendly than synthetic dyes and may have medicinal benefits. Fungi are a natural source of dye that can be substituted for plants. For example, medicinal mushrooms offer a wide range of safe organic dyes that may be produced instantly, inexpensively, and in large quantities. Meanwhile, medicinal mushroom dyes may provide a less expensive choice for photovoltaic (PV) technology due to their non-toxic and environmentally friendly qualities. This agenda thoroughly explains the significance of pigments from medicinal mushrooms in culinary and solar PV applications. If executed effectively, such a large, unwieldy and ambitious agenda may lead the world towards inclusive and sustainable development.

Countries
Malaysia, Serbia, Serbia, Serbia, Serbia, Serbia
Keywords

clean energy, food colourants, QH301 Biology, fungal dyes, TJ807-830, TD194-195, 333, Renewable energy sources, [CHIM] Chemical Sciences, GE1-350, Environmental effects of industries and plants, Q Science (General), sustainability, medicinal mushroom, Environmental sciences, [INFO.INFO-BT] Computer Science [cs]/Biotechnology, GE Environmental Sciences

Powered by OpenAIRE graph
Found an issue? Give us feedback