
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Oat–Field Pea Intercropping for Sustainable Oat Production: Effect on Yield, Nutritive Value and Environmental Impact

doi: 10.3390/su15043514
handle: 10568/135039
The aim of the study is to evaluate the effect of Oat–field pea intercropping on the yield, nutritive value, and environmental impact of oat grown under a reduced level of nitrogen fertilisation. The trial was laid out in a randomized complete block design with the following treatments: oat-0 (oat (Avena sativa L., SRCP X 80 Ab 2291 variety) without N fertilization (urea)), oat-23 (oat fertilised with 23 kg N/ha), oat-46 (oat fertilised with 46 kg N/ha), O1P1 (oat intercropped with field pea (Pisum sativum L., local variety) a ratio of 1:1), O1P2 (oat intercropped with field pea a ratio of 1:2), and O2P1 (oat intercropped with field pea at a ratio of 2:1). All of the experimental plots received standard husbandry practices except for nitrogen fertilisation. Soil pH, organic matter, total nitrogen, available phosphorus, and organic carbon were determined before and after planting. The effect of nitrogen fertilization and intercropping of oat with field pea on carbon footprint, acidification footprint, eutrophication footprint, and human toxicity footprint was calculated for each plot. Oat-0 significantly reduced the total nitrogen content of the soil, while there was no significant effect of the other treatments. O2P1 significantly out-yielded all control groups; however, it was not significantly different from fertilisation treatments. Intercropping with field pea did not significantly increase the cost of production of dry matter, crude protein, or dry matter digestibility compared to control groups. Intercropping with field pea significantly reduced the carbon footprint, acidification, eutrophication, and human toxicity footprint compared to the control groups. Therefore, oat–field pea intercrops are recommended for the production of high-quality forage at low N input with reduced environmental impact.
- Jimma University Ethiopia
- CGIAR Consortium France
- CGIAR France
- CGIAR Consortium France
- CGIAR France
eutophication, <i>Avena sativa</i>, Environmental effects of industries and plants, avena sativa, carbon, forage, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, acidification, eutrophication, GE1-350, human toxicity
eutophication, <i>Avena sativa</i>, Environmental effects of industries and plants, avena sativa, carbon, forage, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, acidification, eutrophication, GE1-350, human toxicity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
