Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2023
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2023
Data sources: Datacite
ZENODO
Article . 2023
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Seaweed supplementation to mitigate methane (CH4) emissions by cattle (SeaCH4NGE-PLUS)

Authors: Pétursdóttir, Ásta H.; Einarsdóttir, Brynja; Guðmundsdóttir, Elísabet Eik; Desnica, Natasa; Sim, Rebecca; Kuenzel, Susanne; Rodehutscord, Markus; +2 Authors

Seaweed supplementation to mitigate methane (CH4) emissions by cattle (SeaCH4NGE-PLUS)

Abstract

This report contains the main experimental results from the project SeaCH4NGE-PLUS. Briefly, the screening of chemical content of a range of seaweeds collected in Iceland in 2020 and 2021 did not identify a bromoform rich seaweed that had high promise as a methane reducing feed component for cattle. Certain samples of brown macroalgae were high in total phenolic content, indicating a high phlorotannin content that has been associated with a moderate methane reduction. That is consistent with the findings of this research. Samples of Asparagopsis sp. indicated that they may have a short shelf life to preserve the bromoform content. Fermentation may increase slightly the methane reduction potential of seaweed, but extracting phlorotannins did not yield a much higher reduction of methane as hypothesized. This report is closed until 31.12.2023. ___ Þessi skýrsla inniheldur helstu tilraunaniðurstöður úr verkefninu SeaCH4NGE-PLUS. Í stuttu máli sýndi skimun á efnainnihaldi u.þ.b. 20 þörungategunda sem safnað var á Íslandi 2020 og 2021, ekki fram á brómóformríkt þang, en bromoform ríkt þang getur haft metan minnkandi áhrif þegar það er gefið nautgripum. Sýni af brúnþörungum voru gjarnan há í fenólinnihaldi, sem bendir til mikils flórótanníninnihalds sem hefur verið tengt hóflegri metanlækkun. Rannsóknir á Asparagopsis þörungum. gaf til kynna að þau sýni gætu haft stutt geymsluþol, en áhrif voru minni en reiknað var með. Gerjun getur haft lítilleg jákvæð áhrif á metanframleiðslu (þ.e.a.s. dregið aðeins meira úr framleiðslu), en útdráttur af flórótannínum hafði ekki afgerandi áhrif á metanframleiðslu. Þessi skýrsla er lokUð til 31.12.2023.

Funding: Loftslagssjóður, Rannís

Related Organizations
Keywords

algae, macroalgae, safety, iodine, methane, feed, trace elements, bromoform, cows, climate change, cattle, quality, seaweed, macrominerals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
  • 12
    views
    Data sourceViewsDownloads
    ZENODO120
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
12
Related to Research communities
Energy Research