Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

[Impact of seasons, years El Nino/La Nina and rainfalls on stroke-related morbidity and mortality in Kinshasa].

Authors: F, Kintoki Mbala; B, Longo-Mbenza; S, Mbungu Fuele; N, Zola; D, Motebang; V, Nakin; C, Lueme Lokotola; +2 Authors

[Impact of seasons, years El Nino/La Nina and rainfalls on stroke-related morbidity and mortality in Kinshasa].

Abstract

The significant impact of seasonality and climate change on stroke-related morbidity and mortality is well established, however, some findings on this issue are conflicting. The objective was to determine the impact of gender, age, season, year of admission, temperature, rainfall and El Nino phenomenon on ischemic and hemorrhagic strokes and fatal cases of stroke.The study was carried out at the teaching hospital of Kinshasa, DRC, between January 1998 and December 2004. Rainy and dry seasons, elevated temperatures, indices of rainfalls El Nino years 1998, 2002 and 2004, but La Nina years 1999-2000 and neutral/normal years 2001 and 2003 were defined.Among 470 incident strokes, 34.5% of victims (n=162) died. Traditional seasons (small dry season, small rainy season, great dry season, great rainy season) and temperatures did not significantly (P>0.005) impact on stroke incidence. However, there was a positive association between the decrease in rainfall, El Nino, and incident ischemic strokes, but a significant positive association between the increase in rainfall, La Nina, and incident hemorrhagic strokes. Using logistic regression analysis, age ≥ 60 years (OR: 1.7, 95% CI: 1.2-2.5; P=0.018) and El Nino years (OR: 2, 95% CI: 1.2-3.3; P=0.009) were identified as the independent predictors of fatal strokes.Early warning systems should be developed to predict the impact of seasons and climate variability on stroke morbidity and mortality.

Keywords

Adult, Aged, 80 and over, El Nino-Southern Oscillation, Male, Adolescent, Climate Change, Incidence, Rain, Middle Aged, Droughts, Hospitals, University, Stroke, Patient Admission, Democratic Republic of the Congo, Humans, Female, Seasons, Child, Aged, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average