
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effect of feeding and thermal stress on photosynthesis, respiration and the carbon budget of the scleractinian coral Pocillopora damicornis
doi: 10.1101/378059
Effect of feeding and thermal stress on photosynthesis, respiration and the carbon budget of the scleractinian coral Pocillopora damicornis
AbstractStudying carbon dynamics in the coral holobiont provides essential knowledge of nutritional strategies and is thus central to understanding coral ecophysiology. In this study, the first aim was to investigate the effect of daily feeding and thermal stress on oxygen (O2) rates measured at polyp-scale with microsensors and at whole fragment scale using incubation methods. The second aim was to assess the carbon budget of the symbiotic association using H13CO3, under the different conditions. Micro- and macro-scale measurements revealed enhanced O2 evolution rates for fed compared to unfed corals. However, gross O2 production in fed corals was increased at high temperature on a macroscale but not on a microscale basis, likely due to a heterogeneous distribution of photosynthesis over the coral surface. Starved corals always exhibited reduced photosynthetic activity at high temperature, which suggests that the nutritional status of the coral host is a key limiting factor for coral productivity under thermal stress. Quantification of photosynthate translocation and carbon budgets showed very low incorporation rates, for both symbionts and host (0.03 - 0.6 μg C cm-2 h-1) equivalent to only 0.008 - 0.6 %, of the photosynthetically fixed carbon for P. damicornis, in all treatments. Carbon loss (via respiration and/or mucus release) was about 41 - 47 % and 52 - 76% of the fixed carbon for starved and fed corals, respectively. Such high loss of translocated carbon suggests that P. damicornis is nitrogen and/or phosphorus limited. Heterotrophy might thus cover a larger portion of the nutritional demand for P. damicornis than previously assumed. Our results suggest that active feeding plays a fundamental role in metabolic dynamics and bleaching susceptibility of corals.
- Department of Chemistry, University of Cambridge, UK United Kingdom
- University of Copenhagen Denmark
- University of Cambridge United Kingdom
- University of California System United States
- KOBENHAVNS UNIVERSITET Denmark
8 Research products, page 1 of 1
- 2003IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
