
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils

pmid: 17991021
Characterization of novel linuron-mineralizing bacterial consortia enriched from long-term linuron-treated agricultural soils
Linuron-mineralizing cultures were enriched from two linuron-treated agricultural soils in the presence and absence of a solid support. The cultures contained linuron-degrading bacteria, which coexisted with bacteria degrading either 3,4-dichloroaniline (3,4-DCA) or N,O-dimethylhydroxylamine (N,O-DMHA), two common metabolites in the linuron degradation pathway. For one soil, the presence of a solid support enriched for linuron-degrading strains phylogenetically related to but different from those enriched without support. Most linuron-degrading consortium members were identified as Variovorax, but a Hydrogenophaga and an Achromobacter strain capable of linuron degradation were also obtained. Several of the linuron-degrading isolates also degraded 3,4-DCA. Isolates that degraded 3,4-DCA but not linuron belonged to the genera Variovorax, Cupriavidus and Afipia. Hyphomicrobium spp. were involved in the metabolism of N,O-DMHA. Whereas several isolates degraded linuron independently, more efficient degradation was achieved by combining linuron and 3,4-DCA-degraders or by adding casamino acids. These data suggest that (1) linuron degradation is performed by a group of metabolically interacting bacteria rather than by individual strains, (2) there are other genera in addition to Variovorax that degrade linuron beyond 3,4-DCA, (3) linuron-degrading consortia of different origins have a similar composition, and (4) interactions between consortium members can be complex and can involve exchange of both metabolites and other nutrients.
- KU Leuven Belgium
- Université Catholique de Louvain Belgium
DNA, Bacterial, Bacteria, Herbicides, Molecular Sequence Data, Agriculture, Sequence Analysis, DNA, DNA, Ribosomal, Polymerase Chain Reaction, Culture Media, Comamonadaceae, Biodegradation, Environmental, RNA, Ribosomal, 16S, Proteobacteria, Soil Pollutants, Linuron, Ecosystem, Soil Microbiology
DNA, Bacterial, Bacteria, Herbicides, Molecular Sequence Data, Agriculture, Sequence Analysis, DNA, DNA, Ribosomal, Polymerase Chain Reaction, Culture Media, Comamonadaceae, Biodegradation, Environmental, RNA, Ribosomal, 16S, Proteobacteria, Soil Pollutants, Linuron, Ecosystem, Soil Microbiology
2 Research products, page 1 of 1
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).78 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
