Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Marine ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Marine Science
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Climate Change Increases Susceptibility to Grazers in a Foundation Seaweed

Authors: Henrik Pavia; Alexandra Kinnby; Gunilla B. Toth;

Climate Change Increases Susceptibility to Grazers in a Foundation Seaweed

Abstract

Climate change leads to multiple effects caused by simultaneous shifts in several physical factors which will interact with species and ecosystems in complex ways. In marine systems the effects of climate change include altered salinity, increased temperature, and elevated pCO2 which are currently affecting and will continue to affect marine species and ecosystems. Seaweeds are primary producers and foundation species in coastal ecosystems, which are particularly vulnerable to climate change. The brown seaweed Fucus vesiculosus (bladderwrack) is an important foundation species in nearshore ecosystems throughout its natural range in the North Atlantic Ocean and the Baltic Sea. This study investigates how individual and interactive effects of temperature, salinity, and pCO2 affect F. vesiculosus, using a fully crossed experimental design. We assessed the effects on F. vesiculosus in terms of growth, biochemical composition (phlorotannin content, C:N ratio, and ∂13C), and susceptibility to the specialized grazer Littorina obtusata. We observed that elevated pCO2 had a positive effect on seaweed growth in ambient temperature, but not in elevated temperature, while growth increased in low salinity at ambient but not high temperature, regardless of pCO2-level. In parallel to the statistically significant, but relatively small, positive effects on F. vesiculosus growth, we found that the seaweeds became much more susceptible to grazing in elevated pCO2 and reduced salinity, regardless of temperature. Furthermore, the ability of the seaweeds to induce chemical defenses (phlorotannins) was strongly reduced by all the climate stressors. Seaweeds exposed to ambient conditions more than doubled their phlorotannin content in the presence of grazers, while seaweeds exposed to any single or combined stress conditions showed only minor increases in phlorotannin content, or none at all. Despite the minor positive effects on seaweed growth, the results of this study imply that climate change can strongly affect the ability of fucoid seaweeds to induce chemical defenses and increase their susceptibility to grazers. This will likely lead to widespread consequences under future climate conditions, considering the important role of F. vesiculosus and other fucoids in many coastal ecosystems.

Keywords

freshening, warming, Science, Q, Fucus vesiculosus, temperature, General. Including nature conservation, geographical distribution, ocean acidification, QH1-199.5, salinity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
gold