Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Land Degradation and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Land Degradation and Development
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Land use change uncertainty impacts on streamflow and sediment projections in areas undergoing rapid development: A case study in the Mekong Basin

Authors: Mauricio E. Arias; Bikesh Shrestha; Bikesh Shrestha; Thomas A. Cochrane; Brian S. Caruso;

Land use change uncertainty impacts on streamflow and sediment projections in areas undergoing rapid development: A case study in the Mekong Basin

Abstract

AbstractQuantitative understanding of potential changes in streamflow and sediment load is complicated by uncertainty related to land use change projections, which is characterized by a high uncertainty in terms of demand (quantity) and location of changes (spatial distribution). We simulate the Sesan, Srepok, and Sekong Rivers (3S), the most important tributaries of the lower Mekong River, with the Soil and Water Assessment Tool (SWAT) to investigate the implications of conversion of forest to agricultural lands. Multiple land use transitions in the 3S basin are projected using the Land Change Modeler. The uncertainty in land use projection was addressed using an ensemble forecasting approach for 2060, combining (a) three land demand scenarios, (b) two transition potential modeling approaches (i.e., approach to create maps of the likelihood for areas to transition from one land use type to another), and (c) retaining or not protected areas. Land demand leads to the greatest uncertainty in land use change projections. Transition potential modeling approaches do not make much difference in the total change, but can result in spatial variations of change. Retaining protected areas can contribute significantly to uncertainty in land use change projections. Decrease in annual streamflow of the 3S basin varied from 3% to 21%, and changes in annual sediment outflux from the basin ranged from −8% to 249% for simulated scenarios. Land use demand uncertainty results in the highest streamflow and sediment load changes and can thus have major consequences for water and sediment management strategies in areas undergoing rapid development.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%