Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Monitoring and Assessment
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Removal of sulfamethoxazole antibiotic from aqueous solutions by silver@reduced graphene oxide nanocomposite

Authors: Mina Keshvardoostchokami; Abbasali Zamani; Abdolhosein Parizanganeh; Soraya Rasooli; Farideh Piri;

Removal of sulfamethoxazole antibiotic from aqueous solutions by silver@reduced graphene oxide nanocomposite

Abstract

In the present study, the synthesizing of silver@reduced graphene oxide nanocomposite, through a facile precipitation method, is reported. In this method, in the synthesizing step, reduced graphene oxide was applied as a support, silver acetate as a precursor of Ag0, and sodium hydroxide as a medium for reducing procedure. Then synthesized particles were characterized by using transmission electron microscopy analysis, Fourier-transform infrared spectroscopy, field emission scanning microscopy/energy dispersive X-ray, and X-ray diffraction. Adsorbent potentials of the prepared nanocomposite were evaluated for sulfamethoxazole removal from polluted aqueous solutions via two different experimental methods, namely, "one-at-a-time" and "central composite design". The given results from the one-at-a-time method confirms that 0.007 g of silver@reduced graphene oxide nanocomposite can remove 88% (188.57 mg/g) of sulfamethoxazole from a 0.05 dm3 solution (initial concentration 30 mg/dm3) at pH = 5 after 3600 s' contact time. However, in the central composite design method, the optimum condition was 95% (79.17 mg/g) uptake of this drug from 0.05 dm3 of polluted solution with initial concentration of 30 mg/dm3 and pH = 7.5, using 0.018 g of the adsorbent in 3600 s. The main mechanism for sulfamethoxazole removal can be suggested as a suitable interaction between S atoms in functional groups in the drug and Ag atoms on the surface of nanoparticles. The pseudo-second-order patterns and Freundlich model described the empirical data isotherm and kinetics for the adsorption processes, respectively. The maximum adsorption capacity by experimental and theoretical isotherm methods (Langmuir) obtained 250 and 357 mg/g, respectively. Efficiency of the adsorbent in treatment of SMX from real samples displayed less hardness and electrical conductance samples have the maximum uptake percent while existence of nitrate ions in the solutions did not induce any negative effect on the removal of the SMX. All obtained results indicated loading of Ag nanoparticles on rGO nanosheets is an effective strategy for SMX uptake with high proficiency and shows great promise as pollutant adsorbent for environmental applications.

Related Organizations
Keywords

Sulfamethoxazole, Metal Nanoparticles, Silver Compounds, Water, Acetates, Anti-Bacterial Agents, Nanocomposites, Kinetics, Microscopy, Electron, Transmission, X-Ray Diffraction, Spectroscopy, Fourier Transform Infrared, Graphite, Adsorption, Water Pollutants, Chemical, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average