
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
ABA regulation of antioxidant activity during post-germination desiccation and subsequent rehydration in wheat

pmid: 30257577
ABA regulation of antioxidant activity during post-germination desiccation and subsequent rehydration in wheat
ABA regulation of antioxidant activity during post-germination desiccation and subsequent rehydration was studied in two wheat cultivars PBW 644 (ABA-higher sensitive and drought tolerant) and PBW 343 (ABA-lesser sensitive and drought susceptible) where 1 d-germinated seeds were exposed to ABA/ PEG- 6000 for next 1 d, desiccated for 4 d and subsequently rehydrated for 4 d. Ascorbate, dehydrascorbate to ascorbate ratio, malondialdehyde (MDA), hydroxyl radicals, and activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), alcohol dehydrogenase (AlcDH) and aldehyde dehydrogenase (AldDH) were measured in seedlings just before desiccation (2 d old), desiccated (6 d old) and rehydrated (10 d old) stages. ROS/NO signaling was studied under CT and ABA supply by supplying ROS and NO scavengers. During desiccation, both cultivars showed increase of oxidative stress (dehydroascorbate to ascorbate ratio, MDA, hydroxyl radicals) and antioxidant activity in the form of ascorbate content and AldDH activity while other antioxidant enzymes were not increased. PBW 644 showed higher antioxidant activity thus produced less oxidative stress compared to PBW 343. During rehydration, activities of all antioxidant enzymes and levels of ROS (hydroxyl radicals) were increased in both cultivars and MDA was decreased in PBW 343. ABA supply improved desiccation as well as rehydration by improving all parameters of antioxidant activity tested in this study. PEG supply resembled to ABA-supply for its effects. ABA/PEG improvements were seen higher in PBW 644. ROS/NO-signalling was involved under CT as well as under ABA for increasing antioxidant activity during desiccation as well as rehydration in both cultivars.
- Library and Information Centre of the Hungarian Academy of Sciences Hungary
- Magyar Tudományos Akadémia Könyvtára (Library of the Hungarian Academy of Sciences) Hungary
- Library and Information Centre of the Hungarian Academy of Sciences Hungary
- Punjab Agricultural University India
- Hungarian Academy of Sciences Hungary
Hydroxyl Radical, Water, Ascorbic Acid, Antioxidants, Oxidative Stress, Malondialdehyde, QH Natural history / természetrajz, Triticum, Abscisic Acid
Hydroxyl Radical, Water, Ascorbic Acid, Antioxidants, Oxidative Stress, Malondialdehyde, QH Natural history / természetrajz, Triticum, Abscisic Acid
7 Research products, page 1 of 1
- 1984IsAmongTopNSimilarDocuments
- 1974IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 1985IsAmongTopNSimilarDocuments
- 2001IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
