Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institut National de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hyper Article en Ligne
Article . 2017
License: CC BY SA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2017
License: CC BY SA
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL INRAE
Article . 2017
License: CC BY SA
Data sources: HAL INRAE
Planta
Article . 2018
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low source–sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels

Authors: Angélica Silva; Henrique Noronha; Zhanwu Dai; Serge Delrot; Hernâni Gerós;

Low source–sink ratio reduces reserve starch in grapevine woody canes and modulates sugar transport and metabolism at transcriptional and enzyme activity levels

Abstract

Severe leaf removal decreases storage starch and sucrose in grapevine cv. Cabernet Sauvignon fruiting cuttings and modulates the activity of key enzymes and the expression of sugar transporter genes. Leaf removal is an agricultural practice that has been shown to modify vineyard efficiency and grape and wine composition. In this study, we took advantage of the ability to precisely control the number of leaves to fruits in Cabernet Sauvignon fruiting cuttings to study the effect of source-sink ratios (2 (2L), 6 (6L) and 12 (12) leaves per cluster) on starch metabolism and accumulation. Starch concentration was significantly higher in canes from 6L (42.13 ± 1.44 mg g DW-1) and 12L (43.50 ± 2.85 mg g DW-1) than in 2L (22.72 ± 3.10 mg g DW-1) plants. Moreover, carbon limitation promoted a transcriptional adjustment of genes involved in starch metabolism in grapevine woody tissues, including a decrease in the expression of the plastidic glucose-6-phosphate translocator, VvGPT1. Contrarily, the transcript levels of the gene coding the catalytic subunit VvAGPB1 of the VvAGPase complex were higher in canes from 2L plants than in 6L and 12L, which positively correlated with the biochemical activity of this enzyme. Sucrose concentration increased in canes from 2L to 6L and 12L plants, and the amount of total phenolics followed the same trend. Expression studies showed that VvSusy transcripts decreased in canes from 2L to 6L and 12L plants, which correlated with the biochemical activity of insoluble invertase, while the expression of the sugar transporters VvSUC11 and VvSUC12, together with VvSPS1, which codes an enzyme involved in sucrose synthesis, increased. Thus, sucrose seems to control starch accumulation through the adjustment of the cane sink strength.

Countries
France, Portugal
Keywords

Monosaccharide Transport Proteins, Saccharose, [SDV]Life Sciences [q-bio], Leaf removal, Real-Time Polymerase Chain Reaction, vitis vinifera, Leaf-cluster ratio, traitement des feuilles, Gene Expression Regulation, Plant, Expression des gènes, [SDV.BV]Life Sciences [q-bio]/Vegetal Biology, Vitis, Chromatography, High Pressure Liquid, 580, Science & Technology, Viticulture, Traitement des feuilles, [ SDV ] Life Sciences [q-bio], leaf removal, Plant Stems, beta-Fructofuranosidase, starch, Leaf Removal, Starch, viticulture, Leaf–Cluster Ratio, leaf–cluster ratio, [SDV] Life Sciences [q-bio], Vitis Vinifera, Vitis vinifera, saccharose, Microscopy, Electron, Scanning, Carbohydrate Metabolism, expression des gènes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 1
  • 3
    views
    1
    downloads
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM31
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
25
Top 10%
Average
Top 10%
3
1
Green