- home
- Advanced Search
- Energy Research
- FR
- Aurora Universities Network
- University of East Anglia
- Energy Research
- FR
- Aurora Universities Network
- University of East Anglia
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Authors:Frédéric Chevallier;
Pierre Regnier; Julia Pongratz;Frédéric Chevallier
Frédéric Chevallier in OpenAIREAtul K. Jain;
+30 AuthorsAtul K. Jain
Atul K. Jain in OpenAIREFrédéric Chevallier;
Pierre Regnier; Julia Pongratz;Frédéric Chevallier
Frédéric Chevallier in OpenAIREAtul K. Jain;
Atul K. Jain
Atul K. Jain in OpenAIRERoxana Petrescu;
Roxana Petrescu
Roxana Petrescu in OpenAIRERobert J. Scholes;
Robert J. Scholes
Robert J. Scholes in OpenAIREPep Canadell;
Pep Canadell
Pep Canadell in OpenAIREMasayuki Kondo;
Hui Yang;Masayuki Kondo
Masayuki Kondo in OpenAIREMarielle Saunois;
Marielle Saunois
Marielle Saunois in OpenAIREBo Zheng;
Wouter Peters; Wouter Peters;Bo Zheng
Bo Zheng in OpenAIREBenjamin Poulter;
Benjamin Poulter; Benjamin Poulter;Benjamin Poulter
Benjamin Poulter in OpenAIREMatthew W. Jones;
Matthew W. Jones
Matthew W. Jones in OpenAIREHanqin Tian;
Hanqin Tian
Hanqin Tian in OpenAIREXuhui Wang;
Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald;Xuhui Wang
Xuhui Wang in OpenAIREIngrid T. Luijkx;
Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow;Ingrid T. Luijkx
Ingrid T. Luijkx in OpenAIREChunjing Qiu;
Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIREAna Bastos;
Ana Bastos
Ana Bastos in OpenAIREAbstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESAuthors:David A. Carozza;
Steve Mackinson;David A. Carozza
David A. Carozza in OpenAIREJeroen Steenbeek;
Jeroen Steenbeek
Jeroen Steenbeek in OpenAIREVilly Christensen;
+37 AuthorsVilly Christensen
Villy Christensen in OpenAIREDavid A. Carozza;
Steve Mackinson;David A. Carozza
David A. Carozza in OpenAIREJeroen Steenbeek;
Jeroen Steenbeek
Jeroen Steenbeek in OpenAIREVilly Christensen;
Philippe Verley;Villy Christensen
Villy Christensen in OpenAIRESusa Niiranen;
Susa Niiranen
Susa Niiranen in OpenAIREAndrea Bryndum-Buchholz;
Andrea Bryndum-Buchholz
Andrea Bryndum-Buchholz in OpenAIREMatthias Büchner;
Matthias Büchner
Matthias Büchner in OpenAIREDerek P. Tittensor;
Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton;Derek P. Tittensor
Derek P. Tittensor in OpenAIREJulia L. Blanchard;
Julia L. Blanchard
Julia L. Blanchard in OpenAIRERicardo Oliveros-Ramos;
Ricardo Oliveros-Ramos
Ricardo Oliveros-Ramos in OpenAIREJacob Schewe;
Jacob Schewe
Jacob Schewe in OpenAIRESimon Jennings;
Simon Jennings; Manuel Barange;Simon Jennings
Simon Jennings in OpenAIRECharles A. Stock;
Charles A. Stock
Charles A. Stock in OpenAIREBoris Worm;
Miranda C. Jones;Boris Worm
Boris Worm in OpenAIRENicola D. Walker;
Nicola D. Walker
Nicola D. Walker in OpenAIRELaurent Bopp;
Olivier Maury; Olivier Maury; William W. L. Cheung;Laurent Bopp
Laurent Bopp in OpenAIRETiago H. Silva;
Tiago H. Silva
Tiago H. Silva in OpenAIREDaniele Bianchi;
Daniele Bianchi
Daniele Bianchi in OpenAIREHeike K. Lotze;
Tilla Roy;Heike K. Lotze
Heike K. Lotze in OpenAIRECatherine M. Bulman;
Tyler D. Eddy; Tyler D. Eddy;Catherine M. Bulman
Catherine M. Bulman in OpenAIRENicolas Barrier;
Nicolas Barrier
Nicolas Barrier in OpenAIREMarta Coll;
Eric D. Galbraith; Eric D. Galbraith;Marta Coll
Marta Coll in OpenAIREJose A. Fernandes;
Jose A. Fernandes
Jose A. Fernandes in OpenAIREYunne-Jai Shin;
Yunne-Jai Shin;Yunne-Jai Shin
Yunne-Jai Shin in OpenAIREWhile the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 08 Dec 2021Publisher:Dryad Authors:Ivimey-Cook, Edward;
Piani, Claudio; Hung, Wei-Tse; Berg, Elena;Ivimey-Cook, Edward
Ivimey-Cook, Edward in OpenAIRE# Genetic background and thermal regime influence adaptation to novel environment in the seed beetle, Callosobruchus maculatus [https://doi.org/10.5061/dryad.f1vhhmgz7](https://doi.org/10.5061/dryad.f1vhhmgz7) The data contained in these two data files (bodymass.csv and lifehistory.csv) contain data on body mass, development time, lifetime reproductive success, and age-specific reproduction of two populations of *Callosobruchus maculatus* that evolved under fluctuating or constant thermal regimes and were subsequently assayed under fluctuating or thermal regimes. ## Description of the data and file structure bodymass.csv contains information on: * Pop: Population (either USA or LEIC). * Treatment: Note that C = Constant Regime Constant Environment; I = Fluctuating Regime Fluctuating Environment; CIA = Constant Regime Fluctuating Environment; ICA = Fluctuating Regime Constant Environment. The transformation for this occurs in the code. * Rep: Replicate number. * Sex: Sex of individual (M or F). * Day: Always 22. * VCMass: Chamber mass (g). * VCBeet.Mass: Chamber w/ beetle (g). * Beet.Mass: Beetle mass (g). lifehistory.csv contains information on: * Pop: Population (either USA or LEIC). * Treat: Treatment; note that C = Constant Regime Constant Environment; I = Fluctuating Regime Fluctuating Environment; CIA = Constant Regime Fluctuating Environment; ICA = Fluctuating Regime Constant Environment. The transformation for this occurs in the code. * Rep: Replicate. * Pair.Date: Date paired. * VC: Chamber ID. * DayEgg: Egg day. * DateEgg: Date of first egg lay. * DateMeasure: Date of measurement for offspring. * DT: Development Time. * Males/Female/Total: Number of offspring that are Male/Female/Combined Total. * Comments: Comments made during data collection. ## Code/Software Code used to run the analysis and produce the graphs is located on GitHub via https://github.com/EIvimeyCook/Fluctuating\_Beetles or via Zenodo with the DOI, https://zenodo.org/doi/10.5281/zenodo.10118422. Climate change is associated with the increase in both mean and variability of thermal conditions. Therefore, the use of more realistic fluctuating thermal regimes is the most appropriate laboratory method for predicting population responses to thermal heterogeneity. However, the long- and short-term implications of evolving under such conditions are not well understood. Here, we examined differences in key life history traits among populations of seed beetles (Callosobruchus maculatus) that evolved under either constant control conditions or in an environment with fluctuating daily temperatures. Specifically, individuals from two distinct genetic backgrounds were kept for 19 generations at one of two temperatures, a constant temperature (T=29°C) or a fluctuating daily cycle (Tmean=33°C, Tmax=40°C, and Tmin=26°C), and were assayed either in their evolved environment or in the other environment. We found that beetles that evolved in fluctuating environments but were then switched to constant 29°C conditions had far greater lifetime reproductive success compared to beetles that were kept in their evolved environments. This increase in reproductive success suggests that beetles raised in fluctuating environments may have evolved greater thermal breadth than control condition beetles. In addition, the degree of sexual dimorphism in body size and development varied as a function of genetic background, evolved thermal environment, and current temperature conditions. These results highlight not only the value of incorporating diel fluctuations into climate research but also suggest that populations that experience variability in temperature may be better able to respond to both short- and long-term changes in environmental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.f1vhhmgz7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.f1vhhmgz7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2018 France, Spain, France, United Kingdom, United Kingdom, Germany, Spain, United Kingdom, United KingdomPublisher:Copernicus GmbH Funded by:EC | BIGSEA, EC | BIOWEB, ARC | Discovery Projects - Gran... +2 projectsEC| BIGSEA ,EC| BIOWEB ,ARC| Discovery Projects - Grant ID: DP140101377 ,EC| CERES ,NSERCAuthors:D. P. Tittensor;
D. P. Tittensor; T. D. Eddy; T. D. Eddy; +47 AuthorsD. P. Tittensor
D. P. Tittensor in OpenAIRED. P. Tittensor;
D. P. Tittensor; T. D. Eddy; T. D. Eddy;D. P. Tittensor
D. P. Tittensor in OpenAIREH. K. Lotze;
H. K. Lotze
H. K. Lotze in OpenAIREE. D. Galbraith;
E. D. Galbraith;E. D. Galbraith
E. D. Galbraith in OpenAIREW. Cheung;
M. Barange; M. Barange;W. Cheung
W. Cheung in OpenAIREJ. L. Blanchard;
J. L. Blanchard
J. L. Blanchard in OpenAIREL. Bopp;
A. Bryndum-Buchholz;
A. Bryndum-Buchholz
A. Bryndum-Buchholz in OpenAIREM. Büchner;
M. Büchner
M. Büchner in OpenAIREC. Bulman;
C. Bulman
C. Bulman in OpenAIRED. A. Carozza;
D. A. Carozza
D. A. Carozza in OpenAIREV. Christensen;
V. Christensen
V. Christensen in OpenAIREM. Coll;
M. Coll; M. Coll; J. P. Dunne; J. A. Fernandes; J. A. Fernandes; E. A. Fulton; E. A. Fulton; A. J. Hobday; A. J. Hobday;V. Huber;
V. Huber
V. Huber in OpenAIRES. Jennings;
S. Jennings; S. Jennings; M. Jones;S. Jennings
S. Jennings in OpenAIREP. Lehodey;
P. Lehodey
P. Lehodey in OpenAIREJ. S. Link;
J. S. Link
J. S. Link in OpenAIRES. Mackinson;
S. Mackinson
S. Mackinson in OpenAIREO. Maury;
O. Maury;O. Maury
O. Maury in OpenAIRES. Niiranen;
R. Oliveros-Ramos; T. Roy; T. Roy;S. Niiranen
S. Niiranen in OpenAIREJ. Schewe;
J. Schewe
J. Schewe in OpenAIREY.-J. Shin;
Y.-J. Shin;Y.-J. Shin
Y.-J. Shin in OpenAIRET. Silva;
T. Silva
T. Silva in OpenAIREC. A. Stock;
C. A. Stock
C. A. Stock in OpenAIREJ. Steenbeek;
P. J. Underwood; J. Volkholz; J. R. Watson;J. Steenbeek
J. Steenbeek in OpenAIREN. D. Walker;
N. D. Walker
N. D. Walker in OpenAIREhandle: 10261/165167
Abstract. Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.
Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Plymouth Marine Scie... arrow_drop_down Plymouth Marine Science Electronic Archive (PlyMEA)Article . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01806877Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2018License: CC BYData sources: Diposit Digital de Documents de la UABGeoscientific Model Development (GMD)Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-11-1421-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Precht, William F.; Aronson, Richard B.; Gardner, Toby A.;Gill, Jennifer A.;
+11 AuthorsGill, Jennifer A.
Gill, Jennifer A. in OpenAIREPrecht, William F.; Aronson, Richard B.; Gardner, Toby A.;Gill, Jennifer A.;
Hawkins, Julie P.;Gill, Jennifer A.
Gill, Jennifer A. in OpenAIREHernández-Delgado, Edwin A.;
Jaap, Walter C.; McClanahan, Tim R.; McField, Melanie D.;Hernández-Delgado, Edwin A.
Hernández-Delgado, Edwin A. in OpenAIREMurdoch, Thaddeus J.T.;
Nugues, Maggy M.; Roberts, Callum M.; Schelten, Christiane K.; Watkinson, Andrew R.; Côté, Isabelle M.;Murdoch, Thaddeus J.T.
Murdoch, Thaddeus J.T. in OpenAIREpmid: 33293016
Caribbean reefs have experienced unprecedented changes in the past four decades. Of great concern is the perceived widespread shift from coral to macroalgal dominance and the question of whether it represents a new, stable equilibrium for coral-reef communities. The primary causes of the shift-grazing pressure (top-down), nutrient loading (bottom-up) or direct coral mortality (side-in)-still remain somewhat controversial in the coral-reef literature. We have attempted to tease out the relative importance of each of these causes. Four insights emerge from our analysis of an early regional dataset of information on the benthic composition of Caribbean reefs spanning the years 1977-2001. First, although three-quarters of reef sites have experienced coral declines concomitant with macroalgal increases, fewer than 10% of the more than 200 sites studied were dominated by macroalgae in 2001, by even the most conservative definition of dominance. Using relative dominance as the threshold, a total of 49 coral-to-macroalgae shifts were detected. This total represents ~35% of all sites that were dominated by coral at the start of their monitoring periods. Four shifts (8.2%) occurred because of coral loss with no change in macroalgal cover, 15 (30.6%) occurred because of macroalgal gain without coral loss, and 30 (61.2%) occurred owing to concomitant coral decline and macroalgal increase. Second, the timing of shifts at the regional scale is most consistent with the side-in model of reef degradation, which invokes coral mortality as a precursor to macroalgal takeover, because more shifts occurred after regional coral-mortality events than expected by chance. Third, instantaneous observations taken at the start and end of the time-series for individual sites showed these reefs existed along a continuum of coral and macroalgal cover. The continuous, broadly negative relationship between coral and macroalgal cover suggests that in some cases coral-to-macroalgae phase shifts may be reversed by removing sources of perturbation or restoring critical components such as the herbivorous sea urchin Diadema antillarum to the system. The five instances in which macroalgal dominance was reversed corroborate the conclusion that macroalgal dominance is not a stable, alternative community state as has been commonly assumed. Fourth, the fact that the loss in regional coral cover and concomitant changes to the benthic community are related to punctuated, discrete events with known causes (i.e. coral disease and bleaching), lends credence to the hypothesis that coral reefs of the Caribbean have been under assault from climate-change-related maladies since the 1970s.
Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPart of book or chapter of book . 2020https://doi.org/10.1016/bs.amb...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryPart of book or chapter of book . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/bs.amb.2020.08.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, FrancePublisher:American Association for the Advancement of Science (AAAS) Funded by:NSF | Molecular Analysis of Chl..., NSF | Starter Grant: Ecophysiol...NSF| Molecular Analysis of Chlamydomonas Mating-Type Locus ,NSF| Starter Grant: Ecophysiology of Marine Picoeukaryotic Primary ProducersAuthors: William Lanier;Igor V. Grigoriev;
Inna Dubchak; Marie L. Cuvelier; +50 AuthorsIgor V. Grigoriev
Igor V. Grigoriev in OpenAIREWilliam Lanier;Igor V. Grigoriev;
Inna Dubchak; Marie L. Cuvelier; Marie L. Cuvelier;Igor V. Grigoriev
Igor V. Grigoriev in OpenAIREPeter von Dassow;
Peter von Dassow
Peter von Dassow in OpenAIREIan T. Paulsen;
Jonathan H. Badger; Carolyn A. Napoli; Elodie Foulon; Hervé Moreau; Aaron Poliakov;Ian T. Paulsen
Ian T. Paulsen in OpenAIREChelle L. Gentemann;
Chelle L. Gentemann
Chelle L. Gentemann in OpenAIREStephane Rombauts;
Stephane Rombauts
Stephane Rombauts in OpenAIREBernard Henrissat;
Jeremy Schmutz; Jeremy Schmutz;Bernard Henrissat
Bernard Henrissat in OpenAIREEve Toulza;
Elif Demir; Jasmyn Pangilinan; Meredith V. Everett; E. Virginia Armbrust; Jill E. Gready; Tania Wyss;Eve Toulza
Eve Toulza in OpenAIREAlex N. Zelensky;
Ursula Goodenough; Susan Lucas;Alex N. Zelensky
Alex N. Zelensky in OpenAIREAlexandra Z. Worden;
Erika Lindquist; Olivier Panaud;Alexandra Z. Worden
Alexandra Z. Worden in OpenAIREKlaus F. X. Mayer;
Klaus F. X. Mayer
Klaus F. X. Mayer in OpenAIREWenche Eikrem;
Steven Robbens; Jae-Hyeok Lee; Jane Grimwood; Jane Grimwood;Wenche Eikrem
Wenche Eikrem in OpenAIREThomas Mock;
Robert Otillar; Sarah M. McDonald; Kemin Zhou; Debashish Bhattacharya;Thomas Mock
Thomas Mock in OpenAIREBenoît Piégu;
Benoît Piégu
Benoît Piégu in OpenAIREUwe John;
Pedro M. Coutinho;Uwe John
Uwe John in OpenAIREYves Van de Peer;
Yves Van de Peer
Yves Van de Peer in OpenAIREAndrew E. Allen;
Andrew E. Allen
Andrew E. Allen in OpenAIREHeidrun Gundlach;
Andrea Aerts; Fabrice Not; Aasf Salamov; Melinda P. Simmons; Pierre Rouzé;Heidrun Gundlach
Heidrun Gundlach in OpenAIREMicaela S. Parker;
Micaela S. Parker
Micaela S. Parker in OpenAIREEvelyne Derelle;
Evelyne Derelle
Evelyne Derelle in OpenAIREPicoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18 S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 568 citations 568 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/38757Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverUniversity of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1167222&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:UKRI | The molecular interface o..., UKRI | Molecular Basis for Contr..., UKRI | How do multi-heme cytochr... +1 projectsUKRI| The molecular interface of microbe-mineral electron transfer ,UKRI| Molecular Basis for Controlled Transmembrane Electron Transfer ,UKRI| How do multi-heme cytochromes form transmembrane wires and conduct electrons between the cell and environment? ,UKRI| Advancing Biotechnologies for Fuel Generation: Exploiting Transmembrane Cytochromes for Solar Energy ConversionAuthors: Colin W. J. Lockwood;Thomas A. Clarke;
Thomas A. Clarke
Thomas A. Clarke in OpenAIREAnne Martel;
Matthew C. Lawes; +7 AuthorsAnne Martel
Anne Martel in OpenAIREColin W. J. Lockwood;Thomas A. Clarke;
Thomas A. Clarke
Thomas A. Clarke in OpenAIREAnne Martel;
Matthew C. Lawes;Anne Martel
Anne Martel in OpenAIREDavid J. Scott;
David J. Scott; Gaye F. White; David J. Richardson;David J. Scott
David J. Scott in OpenAIREGemma Harris;
Gemma Harris
Gemma Harris in OpenAIREJulea N. Butt;
Marcus J. Edwards;Julea N. Butt
Julea N. Butt in OpenAIREMany subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin-cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium Shewanella oneidensis MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane β-barrel (MtrB). However, the structures and mechanisms by which porin-cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. Ab initio modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin-cytochrome-mediated electron transfer via periplasmic cytochromes such as STC.
University of Essex ... arrow_drop_down University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1074/jbc.ra118.001850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 30 Powered bymore_vert University of Essex ... arrow_drop_down University of Essex Research RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1074/jbc.ra118.001850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | 4C, EC | PARIS REINFORCE +1 projectsEC| VERIFY ,EC| 4C ,EC| PARIS REINFORCE ,EC| CHEAuthors:Matthew W. Jones;
Matthew W. Jones
Matthew W. Jones in OpenAIRERobbie M. Andrew;
Robbie M. Andrew
Robbie M. Andrew in OpenAIREGlen P. Peters;
Glen P. Peters
Glen P. Peters in OpenAIREGreet Janssens-Maenhout;
+5 AuthorsGreet Janssens-Maenhout
Greet Janssens-Maenhout in OpenAIREMatthew W. Jones;
Matthew W. Jones
Matthew W. Jones in OpenAIRERobbie M. Andrew;
Robbie M. Andrew
Robbie M. Andrew in OpenAIREGlen P. Peters;
Glen P. Peters
Glen P. Peters in OpenAIREGreet Janssens-Maenhout;
Anthony J. De-Gol;Greet Janssens-Maenhout
Greet Janssens-Maenhout in OpenAIREPhilippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIREPrabir K. Patra;
Prabir K. Patra
Prabir K. Patra in OpenAIREFrederic Chevallier;
Frederic Chevallier
Frederic Chevallier in OpenAIRECorinne Le Quéré;
Corinne Le Quéré
Corinne Le Quéré in OpenAIREAbstractQuantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959–2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 66visibility views 66 download downloads 91 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United Kingdom, France, DenmarkPublisher:Informa UK Limited Funded by:EC | I-REDD+EC| I-REDD+Authors:Mertz, Ole;
Muller, Daniel; Sikor, Thomas; Hett, Cornelia; +24 AuthorsMertz, Ole
Mertz, Ole in OpenAIREMertz, Ole;
Muller, Daniel; Sikor, Thomas; Hett, Cornelia;Mertz, Ole
Mertz, Ole in OpenAIREHeinimann, Andreas;
Heinimann, Andreas
Heinimann, Andreas in OpenAIRECastella, Jean-Christophe;
Castella, Jean-Christophe
Castella, Jean-Christophe in OpenAIRELestrelin, Guillaume;
Lestrelin, Guillaume
Lestrelin, Guillaume in OpenAIRERyan, Casey M.;
Reay, David S.; Schmidt-Vogt, Dietrich;Ryan, Casey M.
Ryan, Casey M. in OpenAIREDanielsen, Finn;
Danielsen, Finn
Danielsen, Finn in OpenAIRETheilade, Ida;
Theilade, Ida
Theilade, Ida in OpenAIREvan Noordwijk, Meine;
van Noordwijk, Meine
van Noordwijk, Meine in OpenAIREVerchot, Louis;
Burgess, Neil D.; Berry, Nicholas J.;Verchot, Louis
Verchot, Louis in OpenAIREPham, Thu Thuy;
Pham, Thu Thuy
Pham, Thu Thuy in OpenAIREMesserli, Peter;
Xu, Jianchu;Messerli, Peter
Messerli, Peter in OpenAIREFensholt, Rasmus;
Hostert, Patrick;Fensholt, Rasmus
Fensholt, Rasmus in OpenAIREPflugmacher, Dirk;
Pflugmacher, Dirk
Pflugmacher, Dirk in OpenAIREBruun, Thilde Bech;
Bruun, Thilde Bech
Bruun, Thilde Bech in OpenAIREde Neergaard, Andreas;
de Neergaard, Andreas
de Neergaard, Andreas in OpenAIREDons, Klaus;
Dewi, Sonya; Rutishauer, Ervan;Dons, Klaus
Dons, Klaus in OpenAIRESun, Zhanli;
Sun, Zhanli
Sun, Zhanli in OpenAIREhandle: 10568/95438
International climate negotiations have stressed the importance of considering emissions from forest degradation under the planned REDD+ (Reducing Emissions from Deforestation and forest Degradation + enhancing forest carbon stocks) mechanism. However, most research, pilot-REDD+ projects and carbon certification agencies have focused on deforestation and there appears to be a gap in knowledge on complex mosaic landscapes containing degraded forests, smallholder agriculture, agroforestry and plantations. In this paper we therefore review current research on how avoided forest degradation may affect emissions of greenhouse gases (GHG) and expected co-benefits in terms of biodiversity and livelihoods. There are still high uncertainties in measuring and monitoring emissions of carbon and other GHG from mosaic landscapes with forest degradation since most research has focused on binary analyses of forest vs. deforested land. Studies on the impacts of forest degradation on biodiversity contain mixed results and there is little empirical evidence on the influence of REDD+ on local livelihoods and tenure security, partly due to the lack of actual payment schemes. Governance structures are also more complex in landscapes with degraded forests as there are often multiple owners and types of rights to land and trees. Recent technological advances in remote sensing have improved estimation of carbon stock changes but establishment of historic reference levels is still challenged by the availability of sensor systems and ground measurements during the reference period. The inclusion of forest degradation in REDD+ calls for a range of new research efforts to enhance our knowledge of how to assess the impacts of avoided forest degradation. A first step will be to ensure that complex mosaic landscapes can be recognised under REDD+ on their own merits.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/95438Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012Data sources: SESAM Publication Database - FP7 ENVUniversity of Copenhagen: ResearchArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Geografisk Tidsskrift-Danish Journal of GeographyArticle . 2012 . Peer-reviewedData sources: CrossrefUniversity of East Anglia: UEA Digital RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/00167223.2012.709678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 France, United KingdomPublisher:Environmental Health Perspectives Funded by:EC | ATOPICAEC| ATOPICAAuthors:Lake, Iain R.;
Lake, Iain R.
Lake, Iain R. in OpenAIREJones, Natalia R.;
Agnew, Maureen;Jones, Natalia R.
Jones, Natalia R. in OpenAIREGoodess, Clare M.;
+7 AuthorsGoodess, Clare M.
Goodess, Clare M. in OpenAIRELake, Iain R.;
Lake, Iain R.
Lake, Iain R. in OpenAIREJones, Natalia R.;
Agnew, Maureen;Jones, Natalia R.
Jones, Natalia R. in OpenAIREGoodess, Clare M.;
Giorgi, Filippo; Hamaoui-Laguel, Lynda;Goodess, Clare M.
Goodess, Clare M. in OpenAIRESemenov, Mikhail A.;
Solomon, Fabien;Semenov, Mikhail A.
Semenov, Mikhail A. in OpenAIREStorkey, Jonathan;
Vautard, Robert;Storkey, Jonathan
Storkey, Jonathan in OpenAIREEpstein, Michelle M.;
Epstein, Michelle M.
Epstein, Michelle M. in OpenAIREGlobally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans.We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed (Ambrosia artemisiifolia) in Europe.A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios.Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results.Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385-391; http://dx.doi.org/10.1289/EHP173.
Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://ineris.hal.science/ineris-01863197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1289/ehp173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu197 citations 197 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 4visibility views 4 download downloads 95 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017Full-Text: https://ineris.hal.science/ineris-01863197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1289/ehp173&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu