- home
- Advanced Search
- Energy Research
- 15. Life on land
- 12. Responsible consumption
- IN
- Aurora Universities Network
- Energy Research
- 15. Life on land
- 12. Responsible consumption
- IN
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Authors: Elena Cervelli; Pier Francesco Recchi; Ester Scotto di Perta; Stefania Pindozzi;doi: 10.3390/land12101865
handle: 11588/943275
In the last two centuries, land-use change (LUC) has been the most important direct change driver for terrestrial ecosystems. In contrast with the consequent ecosystem degradation, forward-looking spatial policies and target landscape and land-use planning processes are needed from a sustainability perspective. The present paper proposes a framework of action, including different landscape-planning and ecological approaches: from spatial modelling to recognize LUC and build different scenarios, to ecosystem service (ES) assessment to evaluate possible environmental impacts. Three different scenarios were explored: Trend, No Tillage, and Energy crops. The sediment delivery ratio and carbon storage and sequestration ESs were assessed and compared for each scenario. The results show that regional development in line with past trends could lead to further land degradation (with ES value losses, in a decade, greater than 5%). Instead, the two scenarios proposed in compliance with EU policies could bring benefits, if only those related to moderate LUCs and respecting the naturally grass-vegetated land. The aim of the paper is to support decision makers and local communities in the landscape planning landscape planning process. From the local to global scale, guided and shared LUC management allows us to implement sustainable development, based not only on a deep knowledge of the physical environment but also of social and economic issues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Authors: Elena Cervelli; Pier Francesco Recchi; Ester Scotto di Perta; Stefania Pindozzi;doi: 10.3390/land12101865
handle: 11588/943275
In the last two centuries, land-use change (LUC) has been the most important direct change driver for terrestrial ecosystems. In contrast with the consequent ecosystem degradation, forward-looking spatial policies and target landscape and land-use planning processes are needed from a sustainability perspective. The present paper proposes a framework of action, including different landscape-planning and ecological approaches: from spatial modelling to recognize LUC and build different scenarios, to ecosystem service (ES) assessment to evaluate possible environmental impacts. Three different scenarios were explored: Trend, No Tillage, and Energy crops. The sediment delivery ratio and carbon storage and sequestration ESs were assessed and compared for each scenario. The results show that regional development in line with past trends could lead to further land degradation (with ES value losses, in a decade, greater than 5%). Instead, the two scenarios proposed in compliance with EU policies could bring benefits, if only those related to moderate LUCs and respecting the naturally grass-vegetated land. The aim of the paper is to support decision makers and local communities in the landscape planning landscape planning process. From the local to global scale, guided and shared LUC management allows us to implement sustainable development, based not only on a deep knowledge of the physical environment but also of social and economic issues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Suresh Sundaramurthy; Shashi Bala; Anil Kumar Sharma; Jyoti Verma; Sasan Zahmatkesh; S. Arisutha; Sarika Verma; Mika Sillanpaa; Nagavinothini Ravichandran; Balamurugan Panneerselvam;doi: 10.3390/su142315699
Paver blocks are manufactured from zero-slump plain concrete, which is small element used for outdoor applications and flexible road surfaces. IS:15658 (2006) permits the use of 33- grade ordinary Portland cement (OPC) as the minimum for manufacturing paver blocks, but the usage of this type of cement is restricted in India nowadays. In this context, we have studied OPC 43-grade cement replaced by 30% Class F-grade fly ash and the addition of 0.0% and 0.5% polypropylene fibre (PPF) to evaluate the suitability of paver blocks in terms of the climatic conditions, movement of vehicles and road surfaces in India. The synergistic effect of the mechanical properties of paver blocks revealed that a 30% replacement of OPC with fly ash and 0.3% PPF is more suitable for the manufacturing of paver blocks. The obtained results from the reference mixes indicated that the mechanical properties of paver blocks have increased with respect to the age of the blocks. The present study is important for paver block manufacturers as it fulfils the mix design, strength and durability requirements for Indian roads associated with the utilization of waste materials such as fly ash. Additionally, the study will help the national economy increase by 20% in the future, along with the sustainability of virgin materials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Suresh Sundaramurthy; Shashi Bala; Anil Kumar Sharma; Jyoti Verma; Sasan Zahmatkesh; S. Arisutha; Sarika Verma; Mika Sillanpaa; Nagavinothini Ravichandran; Balamurugan Panneerselvam;doi: 10.3390/su142315699
Paver blocks are manufactured from zero-slump plain concrete, which is small element used for outdoor applications and flexible road surfaces. IS:15658 (2006) permits the use of 33- grade ordinary Portland cement (OPC) as the minimum for manufacturing paver blocks, but the usage of this type of cement is restricted in India nowadays. In this context, we have studied OPC 43-grade cement replaced by 30% Class F-grade fly ash and the addition of 0.0% and 0.5% polypropylene fibre (PPF) to evaluate the suitability of paver blocks in terms of the climatic conditions, movement of vehicles and road surfaces in India. The synergistic effect of the mechanical properties of paver blocks revealed that a 30% replacement of OPC with fly ash and 0.3% PPF is more suitable for the manufacturing of paver blocks. The obtained results from the reference mixes indicated that the mechanical properties of paver blocks have increased with respect to the age of the blocks. The present study is important for paver block manufacturers as it fulfils the mix design, strength and durability requirements for Indian roads associated with the utilization of waste materials such as fly ash. Additionally, the study will help the national economy increase by 20% in the future, along with the sustainability of virgin materials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Canada, France, France, United Kingdom, SpainPublisher:Springer Science and Business Media LLC Joyashree Roy; Anjal Prakash; Shreya Some; Chandni Singh; Rachel Bezner Kerr; Martina Angela Caretta; Cecilia Conde; Marta Rivera Ferre; Corinne J. Schuster‐Wallace; Maria Cristina Tirado-von der Pahlen; Edmond Totin; Sumit Vij; Emily Baker; Graeme Dean; Emily Hillenbrand; Alison Irvine; Farjana Islam; Katriona McGlade; Hanson Nyantakyi‐Frimpong; Federica Ravera; Alcade C. Segnon; Divya Solomon; Indrakshi Tandon;handle: 10261/303187 , 10568/121964 , 10388/15945
AbstractClimate change impacts are being felt across sectors in all regions of the world, and adaptation projects are being implemented to reduce climate risks and existing vulnerabilities. Climate adaptation actions also have significant synergies and tradeoffs with the Sustainable Development Goals (SDGs), including SDG 5 on gender equality. Questions are increasingly being raised about the gendered and climate justice implications of different adaptation options. This paper investigates if reported climate change adaptation actions are contributing to advancing the goal of gender equality (SDG 5) or not. It focuses on linkages between individual targets of SDG 5 and climate change adaptation actions for nine major sectors where transformative climate actions are envisaged. The assessment is based on evidence of adaptation actions documented in 319 relevant research publications published during 2014–2020. Positive links to nine targets under SDG 5 are found in adaptation actions that are consciously designed to advance gender equality. However, in four sectors—ocean and coastal ecosystems; mountain ecosystems; poverty, livelihood, sustainable development; and industrial system transitions, we find more negative links than positive links. For adaptation actions to have positive impacts on gender equality, gender-focused targets must be intentionally brought in at the prioritisation, designing, planning, and implementation stages. An SDG 5+ approach, which takes into consideration intersectionality and gender aspects beyond women alone, can help adaptation actions move towards meeting gender equality and other climate justice goals. This reflexive approach is especially critical now, as we approach the mid-point in the timeline for achieving the SDGs.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 97 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Canada, France, France, United Kingdom, SpainPublisher:Springer Science and Business Media LLC Joyashree Roy; Anjal Prakash; Shreya Some; Chandni Singh; Rachel Bezner Kerr; Martina Angela Caretta; Cecilia Conde; Marta Rivera Ferre; Corinne J. Schuster‐Wallace; Maria Cristina Tirado-von der Pahlen; Edmond Totin; Sumit Vij; Emily Baker; Graeme Dean; Emily Hillenbrand; Alison Irvine; Farjana Islam; Katriona McGlade; Hanson Nyantakyi‐Frimpong; Federica Ravera; Alcade C. Segnon; Divya Solomon; Indrakshi Tandon;handle: 10261/303187 , 10568/121964 , 10388/15945
AbstractClimate change impacts are being felt across sectors in all regions of the world, and adaptation projects are being implemented to reduce climate risks and existing vulnerabilities. Climate adaptation actions also have significant synergies and tradeoffs with the Sustainable Development Goals (SDGs), including SDG 5 on gender equality. Questions are increasingly being raised about the gendered and climate justice implications of different adaptation options. This paper investigates if reported climate change adaptation actions are contributing to advancing the goal of gender equality (SDG 5) or not. It focuses on linkages between individual targets of SDG 5 and climate change adaptation actions for nine major sectors where transformative climate actions are envisaged. The assessment is based on evidence of adaptation actions documented in 319 relevant research publications published during 2014–2020. Positive links to nine targets under SDG 5 are found in adaptation actions that are consciously designed to advance gender equality. However, in four sectors—ocean and coastal ecosystems; mountain ecosystems; poverty, livelihood, sustainable development; and industrial system transitions, we find more negative links than positive links. For adaptation actions to have positive impacts on gender equality, gender-focused targets must be intentionally brought in at the prioritisation, designing, planning, and implementation stages. An SDG 5+ approach, which takes into consideration intersectionality and gender aspects beyond women alone, can help adaptation actions move towards meeting gender equality and other climate justice goals. This reflexive approach is especially critical now, as we approach the mid-point in the timeline for achieving the SDGs.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 97 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, GermanyPublisher:Oxford University Press (OUP) Zucaro, A.; Forte, A.; Fagnano, M.; Bastianoni, S.; Basosi, R.; Fierro, A.;Abstract Annual fiber sorghum (FS) and perennial giant reed (GR) cultivated in the Mediterranean area are interesting due to their high productivity under drought conditions and their potential use as lignocellulosic feedstock for biorefinery purposes. This study compares environmental constraints related to FS and GR produced on experimental farms (in the Campania region) using an attributional life cycle assessment (LCA) approach through appropriate modeling of the perennial cultivation. For both crops, primary data were available for agricultural management. Direct field emissions (DFEs) were computed, including the potential soil carbon storage (SCS). Giant reed showed the lowest burdens for all impact categories analyzed (most were in the range of 40%–80% of FS values). More apparent were the differences for climate change and freshwater eutrophication (respectively 80% and 81% lower for GR compared to FS). These results are due to the short-term SCS, experimentally detected in the perennial GR crop (about 0.25 ton C ha−1yr−1, with a global warming offsetting potential of about 0.03 ton CO2/tonGR dry biomass). The results are also due to the annual application of triple superphosphate at the sowing fertilization phase for FS, which occurs differently than it does for GR. Phosphorous fertilization was performed only when crops were being established and therefore properly spread along the overall crop lifetime. For both crops, after normalization, terrestrial acidification and particulate matter formation were relevant impact categories, as a consequence of the NH3 DFE by volatilization after urea were spread superficially. Therefore, the results suggest higher environmental benefits of the perennial crop than the annual crop. Integr Environ Assess Manag 2015;11:397–403. © 2015 SETAC Key Points An LCA comparison between Mediterranean annual and perennial feedstocks was conducted to explore their potential use for biorefinery purposes. Environmental constraints of crops fiber sorghum (annual) and giant reed (perennial), which exhibit high productivity under drought conditions, were investigated. Total burdens were largely affected by direct field emissions following fertilizer application. The perennial crop entailed a better environmental performance with reduced input and emissions.
Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, GermanyPublisher:Oxford University Press (OUP) Zucaro, A.; Forte, A.; Fagnano, M.; Bastianoni, S.; Basosi, R.; Fierro, A.;Abstract Annual fiber sorghum (FS) and perennial giant reed (GR) cultivated in the Mediterranean area are interesting due to their high productivity under drought conditions and their potential use as lignocellulosic feedstock for biorefinery purposes. This study compares environmental constraints related to FS and GR produced on experimental farms (in the Campania region) using an attributional life cycle assessment (LCA) approach through appropriate modeling of the perennial cultivation. For both crops, primary data were available for agricultural management. Direct field emissions (DFEs) were computed, including the potential soil carbon storage (SCS). Giant reed showed the lowest burdens for all impact categories analyzed (most were in the range of 40%–80% of FS values). More apparent were the differences for climate change and freshwater eutrophication (respectively 80% and 81% lower for GR compared to FS). These results are due to the short-term SCS, experimentally detected in the perennial GR crop (about 0.25 ton C ha−1yr−1, with a global warming offsetting potential of about 0.03 ton CO2/tonGR dry biomass). The results are also due to the annual application of triple superphosphate at the sowing fertilization phase for FS, which occurs differently than it does for GR. Phosphorous fertilization was performed only when crops were being established and therefore properly spread along the overall crop lifetime. For both crops, after normalization, terrestrial acidification and particulate matter formation were relevant impact categories, as a consequence of the NH3 DFE by volatilization after urea were spread superficially. Therefore, the results suggest higher environmental benefits of the perennial crop than the annual crop. Integr Environ Assess Manag 2015;11:397–403. © 2015 SETAC Key Points An LCA comparison between Mediterranean annual and perennial feedstocks was conducted to explore their potential use for biorefinery purposes. Environmental constraints of crops fiber sorghum (annual) and giant reed (perennial), which exhibit high productivity under drought conditions, were investigated. Total burdens were largely affected by direct field emissions following fertilizer application. The perennial crop entailed a better environmental performance with reduced input and emissions.
Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 FrancePublisher:MDPI AG Mathevet, Raphaël; Allouche, Aurélien; Nicolas, Laurence; Mitroi, Veronica; Fabricius, Christo; Guerbois, Chloe; Anderies, John;doi: 10.3390/su10114171
Social conflicts related to biodiversity conservation and adaptation policy to climate change in coastal areas illustrate the need to reinforce understanding of the “matters of concern” as well as the “matters of fact”. In this paper, we argue that we must rethink adaptation from a new perspective, considering that humans together function as both ecological actors and social actors. Using international examples from the UNESCO world biosphere reserve network, we show that an ontological perspective may provide a simple and compact way to think about coupled infrastructure systems and systematic formalism, allowing for understanding of the relational matrix between actors, institutions and ecosystems. We contend that our formalism responds to three challenges. First, it encompasses the different regional contexts and policies that rely on the same ontology. Second, it provides a method to relate any local adaptation plan to the conservation paradigms that originate from the ecological modernization of policies. Third, it facilitates the discovery of drivers and processes involved in adaptation and management regime shifts by highlighting the way contextual factors configure, determine the structure of the action situation of the Institutional Analysis and Development framework (IAD) (Ostrom 2005), and how it operates.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 FrancePublisher:MDPI AG Mathevet, Raphaël; Allouche, Aurélien; Nicolas, Laurence; Mitroi, Veronica; Fabricius, Christo; Guerbois, Chloe; Anderies, John;doi: 10.3390/su10114171
Social conflicts related to biodiversity conservation and adaptation policy to climate change in coastal areas illustrate the need to reinforce understanding of the “matters of concern” as well as the “matters of fact”. In this paper, we argue that we must rethink adaptation from a new perspective, considering that humans together function as both ecological actors and social actors. Using international examples from the UNESCO world biosphere reserve network, we show that an ontological perspective may provide a simple and compact way to think about coupled infrastructure systems and systematic formalism, allowing for understanding of the relational matrix between actors, institutions and ecosystems. We contend that our formalism responds to three challenges. First, it encompasses the different regional contexts and policies that rely on the same ontology. Second, it provides a method to relate any local adaptation plan to the conservation paradigms that originate from the ecological modernization of policies. Third, it facilitates the discovery of drivers and processes involved in adaptation and management regime shifts by highlighting the way contextual factors configure, determine the structure of the action situation of the Institutional Analysis and Development framework (IAD) (Ostrom 2005), and how it operates.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United Kingdom, NetherlandsPublisher:Frontiers Media SA Funded by:EC | CAT, EC | RAVENEC| CAT ,EC| RAVENAuthors: René R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; +10 AuthorsRené R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; Surendra Adhikari; Argha Banerjee; Francesca Pellicciotti; Francesca Pellicciotti; Ludovicus P. H. van Beek; Marc F. P. Bierkens; Marc F. P. Bierkens; Arthur F. Lutz; Arthur F. Lutz; Walter W. Immerzeel;This study aims at developing and applying a spatially-distributed coupled glacier mass balance and ice-flow model to attribute the response of glaciers to natural and anthropogenic climate change. We focus on two glaciers with contrasting surface characteristics: a debris-covered glacier (Langtang Glacier in Nepal) and a clean-ice glacier (Hintereisferner in Austria). The model is applied from the end of the Little Ice Age (1850) to the present-day (2016) and is forced with four bias-corrected General Circulation Models (GCMs) from the historical experiment of the CMIP5 archive. The selected GCMs represent region-specific warm-dry, warm-wet, cold-dry, and cold-wet climate conditions. To isolate the effects of anthropogenic climate change on glacier mass balance and flow runs from these GCMs with and without further anthropogenic forcing after 1970 until 2016 are selected. The outcomes indicate that both glaciers experience the largest reduction in area and volume under warm climate conditions, whereas area and volume reductions are smaller under cold climate conditions. Simultaneously with changes in glacier area and volume, surface velocities generally decrease over time. Without further anthropogenic forcing the results reveal a 3% (9%) smaller decline in glacier area (volume) for the debris-covered glacier and a 18% (39%) smaller decline in glacier area (volume) for the clean-ice glacier. The difference in the magnitude between the two glaciers can mainly be attributed to differences in the response time of the glaciers, where the clean-ice glacier shows a much faster response to climate change. We conclude that the response of the two glaciers can mainly be attributed to anthropogenic climate change and that the impact is larger on the clean-ice glacier. The outcomes show that the model performs well under different climate conditions and that the developed approach can be used for regional-scale glacio-hydrological modeling.
CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United Kingdom, NetherlandsPublisher:Frontiers Media SA Funded by:EC | CAT, EC | RAVENEC| CAT ,EC| RAVENAuthors: René R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; +10 AuthorsRené R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; Surendra Adhikari; Argha Banerjee; Francesca Pellicciotti; Francesca Pellicciotti; Ludovicus P. H. van Beek; Marc F. P. Bierkens; Marc F. P. Bierkens; Arthur F. Lutz; Arthur F. Lutz; Walter W. Immerzeel;This study aims at developing and applying a spatially-distributed coupled glacier mass balance and ice-flow model to attribute the response of glaciers to natural and anthropogenic climate change. We focus on two glaciers with contrasting surface characteristics: a debris-covered glacier (Langtang Glacier in Nepal) and a clean-ice glacier (Hintereisferner in Austria). The model is applied from the end of the Little Ice Age (1850) to the present-day (2016) and is forced with four bias-corrected General Circulation Models (GCMs) from the historical experiment of the CMIP5 archive. The selected GCMs represent region-specific warm-dry, warm-wet, cold-dry, and cold-wet climate conditions. To isolate the effects of anthropogenic climate change on glacier mass balance and flow runs from these GCMs with and without further anthropogenic forcing after 1970 until 2016 are selected. The outcomes indicate that both glaciers experience the largest reduction in area and volume under warm climate conditions, whereas area and volume reductions are smaller under cold climate conditions. Simultaneously with changes in glacier area and volume, surface velocities generally decrease over time. Without further anthropogenic forcing the results reveal a 3% (9%) smaller decline in glacier area (volume) for the debris-covered glacier and a 18% (39%) smaller decline in glacier area (volume) for the clean-ice glacier. The difference in the magnitude between the two glaciers can mainly be attributed to differences in the response time of the glaciers, where the clean-ice glacier shows a much faster response to climate change. We conclude that the response of the two glaciers can mainly be attributed to anthropogenic climate change and that the impact is larger on the clean-ice glacier. The outcomes show that the model performs well under different climate conditions and that the developed approach can be used for regional-scale glacio-hydrological modeling.
CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Scotto di Perta, Ester; Cesaro, Alessandra; Pindozzi, Stefania; Frunzo, Luigi; Esposito, Giovanni; Papirio, Stefano;doi: 10.3390/en15145032
handle: 11588/891087
This study investigates the dark fermentation of fruit and vegetable waste under mesophilic conditions (30–34 °C), as a valorization route for H2 and volatile fatty acids production, simulating the open market waste composition over the year in two Mediterranean countries. Specifically, the study focuses on the effect of the (i) seasonal variability, (ii) initial pH, and (iii) substrate/inoculum ratio on the yields and composition of the main end products. Concerning the seasonal variation, the summer and spring mixtures led to +16.8 and +21.7% higher H2 production than the winter/autumn mixture, respectively. Further investigation on the least productive substrate (winter/autumn) led to 193.0 ± 7.4 NmL of H2 g VS−1 at a pH of 5.5 and a substrate/inoculum of 1. With the same substrate, at a pH of 7.5, the highest acetic acid yield of 7.0 mmol/g VS was observed, with acetic acid corresponding to 78.2% of the total acids. Whereas a substrate/inoculum of 3 resulted in the lowest H2 yield, amounting to 111.2 ± 7.6 NmL of H2 g VS−1, due to a decrease of the pH to 4.8, which likely caused an inhibitory effect by undissociated acids. This study demonstrates that dark fermentation can be a valuable strategy to efficiently manage such leftovers, rather than landfilling or improperly treating them.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Scotto di Perta, Ester; Cesaro, Alessandra; Pindozzi, Stefania; Frunzo, Luigi; Esposito, Giovanni; Papirio, Stefano;doi: 10.3390/en15145032
handle: 11588/891087
This study investigates the dark fermentation of fruit and vegetable waste under mesophilic conditions (30–34 °C), as a valorization route for H2 and volatile fatty acids production, simulating the open market waste composition over the year in two Mediterranean countries. Specifically, the study focuses on the effect of the (i) seasonal variability, (ii) initial pH, and (iii) substrate/inoculum ratio on the yields and composition of the main end products. Concerning the seasonal variation, the summer and spring mixtures led to +16.8 and +21.7% higher H2 production than the winter/autumn mixture, respectively. Further investigation on the least productive substrate (winter/autumn) led to 193.0 ± 7.4 NmL of H2 g VS−1 at a pH of 5.5 and a substrate/inoculum of 1. With the same substrate, at a pH of 7.5, the highest acetic acid yield of 7.0 mmol/g VS was observed, with acetic acid corresponding to 78.2% of the total acids. Whereas a substrate/inoculum of 3 resulted in the lowest H2 yield, amounting to 111.2 ± 7.6 NmL of H2 g VS−1, due to a decrease of the pH to 4.8, which likely caused an inhibitory effect by undissociated acids. This study demonstrates that dark fermentation can be a valuable strategy to efficiently manage such leftovers, rather than landfilling or improperly treating them.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Authors: Elena Cervelli; Pier Francesco Recchi; Ester Scotto di Perta; Stefania Pindozzi;doi: 10.3390/land12101865
handle: 11588/943275
In the last two centuries, land-use change (LUC) has been the most important direct change driver for terrestrial ecosystems. In contrast with the consequent ecosystem degradation, forward-looking spatial policies and target landscape and land-use planning processes are needed from a sustainability perspective. The present paper proposes a framework of action, including different landscape-planning and ecological approaches: from spatial modelling to recognize LUC and build different scenarios, to ecosystem service (ES) assessment to evaluate possible environmental impacts. Three different scenarios were explored: Trend, No Tillage, and Energy crops. The sediment delivery ratio and carbon storage and sequestration ESs were assessed and compared for each scenario. The results show that regional development in line with past trends could lead to further land degradation (with ES value losses, in a decade, greater than 5%). Instead, the two scenarios proposed in compliance with EU policies could bring benefits, if only those related to moderate LUCs and respecting the naturally grass-vegetated land. The aim of the paper is to support decision makers and local communities in the landscape planning landscape planning process. From the local to global scale, guided and shared LUC management allows us to implement sustainable development, based not only on a deep knowledge of the physical environment but also of social and economic issues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 ItalyPublisher:MDPI AG Authors: Elena Cervelli; Pier Francesco Recchi; Ester Scotto di Perta; Stefania Pindozzi;doi: 10.3390/land12101865
handle: 11588/943275
In the last two centuries, land-use change (LUC) has been the most important direct change driver for terrestrial ecosystems. In contrast with the consequent ecosystem degradation, forward-looking spatial policies and target landscape and land-use planning processes are needed from a sustainability perspective. The present paper proposes a framework of action, including different landscape-planning and ecological approaches: from spatial modelling to recognize LUC and build different scenarios, to ecosystem service (ES) assessment to evaluate possible environmental impacts. Three different scenarios were explored: Trend, No Tillage, and Energy crops. The sediment delivery ratio and carbon storage and sequestration ESs were assessed and compared for each scenario. The results show that regional development in line with past trends could lead to further land degradation (with ES value losses, in a decade, greater than 5%). Instead, the two scenarios proposed in compliance with EU policies could bring benefits, if only those related to moderate LUCs and respecting the naturally grass-vegetated land. The aim of the paper is to support decision makers and local communities in the landscape planning landscape planning process. From the local to global scale, guided and shared LUC management allows us to implement sustainable development, based not only on a deep knowledge of the physical environment but also of social and economic issues.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/land12101865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Suresh Sundaramurthy; Shashi Bala; Anil Kumar Sharma; Jyoti Verma; Sasan Zahmatkesh; S. Arisutha; Sarika Verma; Mika Sillanpaa; Nagavinothini Ravichandran; Balamurugan Panneerselvam;doi: 10.3390/su142315699
Paver blocks are manufactured from zero-slump plain concrete, which is small element used for outdoor applications and flexible road surfaces. IS:15658 (2006) permits the use of 33- grade ordinary Portland cement (OPC) as the minimum for manufacturing paver blocks, but the usage of this type of cement is restricted in India nowadays. In this context, we have studied OPC 43-grade cement replaced by 30% Class F-grade fly ash and the addition of 0.0% and 0.5% polypropylene fibre (PPF) to evaluate the suitability of paver blocks in terms of the climatic conditions, movement of vehicles and road surfaces in India. The synergistic effect of the mechanical properties of paver blocks revealed that a 30% replacement of OPC with fly ash and 0.3% PPF is more suitable for the manufacturing of paver blocks. The obtained results from the reference mixes indicated that the mechanical properties of paver blocks have increased with respect to the age of the blocks. The present study is important for paver block manufacturers as it fulfils the mix design, strength and durability requirements for Indian roads associated with the utilization of waste materials such as fly ash. Additionally, the study will help the national economy increase by 20% in the future, along with the sustainability of virgin materials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Suresh Sundaramurthy; Shashi Bala; Anil Kumar Sharma; Jyoti Verma; Sasan Zahmatkesh; S. Arisutha; Sarika Verma; Mika Sillanpaa; Nagavinothini Ravichandran; Balamurugan Panneerselvam;doi: 10.3390/su142315699
Paver blocks are manufactured from zero-slump plain concrete, which is small element used for outdoor applications and flexible road surfaces. IS:15658 (2006) permits the use of 33- grade ordinary Portland cement (OPC) as the minimum for manufacturing paver blocks, but the usage of this type of cement is restricted in India nowadays. In this context, we have studied OPC 43-grade cement replaced by 30% Class F-grade fly ash and the addition of 0.0% and 0.5% polypropylene fibre (PPF) to evaluate the suitability of paver blocks in terms of the climatic conditions, movement of vehicles and road surfaces in India. The synergistic effect of the mechanical properties of paver blocks revealed that a 30% replacement of OPC with fly ash and 0.3% PPF is more suitable for the manufacturing of paver blocks. The obtained results from the reference mixes indicated that the mechanical properties of paver blocks have increased with respect to the age of the blocks. The present study is important for paver block manufacturers as it fulfils the mix design, strength and durability requirements for Indian roads associated with the utilization of waste materials such as fly ash. Additionally, the study will help the national economy increase by 20% in the future, along with the sustainability of virgin materials.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315699&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Canada, France, France, United Kingdom, SpainPublisher:Springer Science and Business Media LLC Joyashree Roy; Anjal Prakash; Shreya Some; Chandni Singh; Rachel Bezner Kerr; Martina Angela Caretta; Cecilia Conde; Marta Rivera Ferre; Corinne J. Schuster‐Wallace; Maria Cristina Tirado-von der Pahlen; Edmond Totin; Sumit Vij; Emily Baker; Graeme Dean; Emily Hillenbrand; Alison Irvine; Farjana Islam; Katriona McGlade; Hanson Nyantakyi‐Frimpong; Federica Ravera; Alcade C. Segnon; Divya Solomon; Indrakshi Tandon;handle: 10261/303187 , 10568/121964 , 10388/15945
AbstractClimate change impacts are being felt across sectors in all regions of the world, and adaptation projects are being implemented to reduce climate risks and existing vulnerabilities. Climate adaptation actions also have significant synergies and tradeoffs with the Sustainable Development Goals (SDGs), including SDG 5 on gender equality. Questions are increasingly being raised about the gendered and climate justice implications of different adaptation options. This paper investigates if reported climate change adaptation actions are contributing to advancing the goal of gender equality (SDG 5) or not. It focuses on linkages between individual targets of SDG 5 and climate change adaptation actions for nine major sectors where transformative climate actions are envisaged. The assessment is based on evidence of adaptation actions documented in 319 relevant research publications published during 2014–2020. Positive links to nine targets under SDG 5 are found in adaptation actions that are consciously designed to advance gender equality. However, in four sectors—ocean and coastal ecosystems; mountain ecosystems; poverty, livelihood, sustainable development; and industrial system transitions, we find more negative links than positive links. For adaptation actions to have positive impacts on gender equality, gender-focused targets must be intentionally brought in at the prioritisation, designing, planning, and implementation stages. An SDG 5+ approach, which takes into consideration intersectionality and gender aspects beyond women alone, can help adaptation actions move towards meeting gender equality and other climate justice goals. This reflexive approach is especially critical now, as we approach the mid-point in the timeline for achieving the SDGs.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 97 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review 2022 Canada, France, France, United Kingdom, SpainPublisher:Springer Science and Business Media LLC Joyashree Roy; Anjal Prakash; Shreya Some; Chandni Singh; Rachel Bezner Kerr; Martina Angela Caretta; Cecilia Conde; Marta Rivera Ferre; Corinne J. Schuster‐Wallace; Maria Cristina Tirado-von der Pahlen; Edmond Totin; Sumit Vij; Emily Baker; Graeme Dean; Emily Hillenbrand; Alison Irvine; Farjana Islam; Katriona McGlade; Hanson Nyantakyi‐Frimpong; Federica Ravera; Alcade C. Segnon; Divya Solomon; Indrakshi Tandon;handle: 10261/303187 , 10568/121964 , 10388/15945
AbstractClimate change impacts are being felt across sectors in all regions of the world, and adaptation projects are being implemented to reduce climate risks and existing vulnerabilities. Climate adaptation actions also have significant synergies and tradeoffs with the Sustainable Development Goals (SDGs), including SDG 5 on gender equality. Questions are increasingly being raised about the gendered and climate justice implications of different adaptation options. This paper investigates if reported climate change adaptation actions are contributing to advancing the goal of gender equality (SDG 5) or not. It focuses on linkages between individual targets of SDG 5 and climate change adaptation actions for nine major sectors where transformative climate actions are envisaged. The assessment is based on evidence of adaptation actions documented in 319 relevant research publications published during 2014–2020. Positive links to nine targets under SDG 5 are found in adaptation actions that are consciously designed to advance gender equality. However, in four sectors—ocean and coastal ecosystems; mountain ecosystems; poverty, livelihood, sustainable development; and industrial system transitions, we find more negative links than positive links. For adaptation actions to have positive impacts on gender equality, gender-focused targets must be intentionally brought in at the prioritisation, designing, planning, and implementation stages. An SDG 5+ approach, which takes into consideration intersectionality and gender aspects beyond women alone, can help adaptation actions move towards meeting gender equality and other climate justice goals. This reflexive approach is especially critical now, as we approach the mid-point in the timeline for achieving the SDGs.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 download downloads 97 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/121964Data sources: Bielefeld Academic Search Engine (BASE)University of Saskatchewan: eCommons@USASKArticle . 2022License: CC BYFull-Text: https://hdl.handle.net/10388/15945Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Humanities & Social Sciences CommunicationsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAReview . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/s41599-022-01266-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Nov 2018 Belgium, France, Brazil, France, France, Australia, Germany, Netherlands, Netherlands, Brazil, Australia, Australia, United Kingdom, France, France, France, Switzerland, United Kingdom, France, Australia, Italy, United KingdomPublisher:Wiley Emmanuel H. Martin; Verginia Wortel; Thomas E. Lovejoy; Narayanan Ayyappan; Narayanan Ayyappan; Roel J. W. Brienen; Georges Chuyong; Nigel C. A. Pitman; Nina Farwig; John Terborgh; John Terborgh; Ana Andrade; Narcisse Guy Kamdem; Rodolfo Vasque; Hans Beeckman; Paulus Matius; John R. Poulsen; Stephen P. Hubbell; Stephen P. Hubbell; Susan G. Laurance; Iêda Leão do Amaral; Juliana Stropp; Jérôme Chave; Simon L. Lewis; James R. Kellner; Thomas Duncan; Oliver L. Phillips; B.R. Ramesh; Germaine Alexander Parada Gutierrez; Martin J. P. Sullivan; Papi Puspa Warsudi; Connie J. Clark; Donatien Zebaze; Wannes Hubau; Hans Verbeeck; Eurídice N. Honorio Coronado; Tinde van Andel; Takeshi Toma; Renato Valencia; Luis Valenzuela; Andrew R. Marshall; Andrew R. Marshall; Hugo Romero Saltos; Samir Gonçalves Rolim; Ben Swanepoel; Jon Lloyd; Jon Lloyd; Jorcely Barroso; Laurent Descroix; Sebastian K. Herzog; Patricia Alvarez-Loyayza; Robin L. Chazdon; Marcos Silveira; Guido Pardo; David Harris; Olaf Bánki; Thalès de Haulleville; Thalès de Haulleville; Maxime Réjou-Méchain; Wilson Roberto Spironello; Luzmila Arroyo; Jean-Louis Doucet; Leandro Valle Ferreira; James Grogan; Ahimsa Campos-Arceiz; Hans ter Steege; Hans ter Steege; Pierre Ploton; David Kenfack; Koen Hufkens; Bonaventure Sonké; Priya Davidar; Adeline Fayolle; Pandi Vivek; Antonio Ferraz; Gauthier Ligot; David A. Neill; Vincent Droissart; Katrin Boehning-Gaese; Johanna Hurtado; Jan Bogaert; Elizabeth Kearsley; Krisna Gajapersad; Christine Fletcher; Nicolas Barbier; Denise Sasaki; Ervan Rutishauser; Beatriz Schwantes Marimon; Francis Q. Brearley; Javier Silva Espejo; Santiago Espinosa; Jean François Gillet; Benoît Cassart; Benoît Cassart; Christelle Gonmadje; Jean-François Bastin; Quentin Ponette; Charles De Cannière; Jean Claude Razafimahaimodison; Arafat S. Mtui; Luiz Marcelo Brum Rossi; Philippe Saner; Moses Libalah; Mireille Breuer-Ndoundou Hockemba; Michael Kessler; Bruno Hérault; Jason Vleminckx; Alejandro Araujo-Murakami; Aurélie Dourdain; Yves Laumonier; Victoria Meyer; Nicolas Labrière; Richard Condit; Ted R. Feldpausch; Robert Bitariho; James Singh; Marc P. E. Parren; Vincent A. Vos; Mark Schulze; David B. Clark; Yadvinder Malhi; Ben Hur Marimon Junior; J. Daniel Soto; Narayanaswamy Parthasarathy; Francesco Rovero; Casimero Mendoza Bautista; Fernando Cornejo Valverde; Ferry Slik; Abel Monteagudo-Mendoza; Roderick Zagt; Hilandia Brandão; Jürgen Homeier; Plinio Sist; Cintia Rodrigues de Souza; Celso Paulo de Azevedo; Pascal Boeckx; William F. Laurance; Sassan Saatchi; Nicolas Texier; Raphaël Pélissier; Albert Angbonga-Basia; Fabien Wagner; José Luís Camargo;AbstractAimLarge tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan‐tropical model to predict plot‐level forest structure properties and biomass from only the largest trees.LocationPan‐tropical.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey's height, community wood density and aboveground biomass (AGB) from the ith largest trees.ResultsMeasuring the largest trees in tropical forests enables unbiased predictions of plot‐ and site‐level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey's height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium‐sized trees (50–70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate‐diameter classes relative to other continents.Main conclusionsOur approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021Full-Text: https://hdl.handle.net/10568/111872Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2018Full-Text: https://hal.science/hal-02102265Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2020e-space at Manchester Metropolitan UniversityArticle . 2018Data sources: e-space at Manchester Metropolitan UniversityInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Zurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedData sources: Zurich Open Repository and ArchiveGlobal Ecology and BiogeographyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGlobal Ecology and BiogeographyArticle . 2018Data sources: DANS (Data Archiving and Networked Services)Flore (Florence Research Repository)Article . 2018Data sources: Flore (Florence Research Repository)Global Ecology and BiogeographyArticle . 2018James Cook University, Australia: ResearchOnline@JCUArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, GermanyPublisher:Oxford University Press (OUP) Zucaro, A.; Forte, A.; Fagnano, M.; Bastianoni, S.; Basosi, R.; Fierro, A.;Abstract Annual fiber sorghum (FS) and perennial giant reed (GR) cultivated in the Mediterranean area are interesting due to their high productivity under drought conditions and their potential use as lignocellulosic feedstock for biorefinery purposes. This study compares environmental constraints related to FS and GR produced on experimental farms (in the Campania region) using an attributional life cycle assessment (LCA) approach through appropriate modeling of the perennial cultivation. For both crops, primary data were available for agricultural management. Direct field emissions (DFEs) were computed, including the potential soil carbon storage (SCS). Giant reed showed the lowest burdens for all impact categories analyzed (most were in the range of 40%–80% of FS values). More apparent were the differences for climate change and freshwater eutrophication (respectively 80% and 81% lower for GR compared to FS). These results are due to the short-term SCS, experimentally detected in the perennial GR crop (about 0.25 ton C ha−1yr−1, with a global warming offsetting potential of about 0.03 ton CO2/tonGR dry biomass). The results are also due to the annual application of triple superphosphate at the sowing fertilization phase for FS, which occurs differently than it does for GR. Phosphorous fertilization was performed only when crops were being established and therefore properly spread along the overall crop lifetime. For both crops, after normalization, terrestrial acidification and particulate matter formation were relevant impact categories, as a consequence of the NH3 DFE by volatilization after urea were spread superficially. Therefore, the results suggest higher environmental benefits of the perennial crop than the annual crop. Integr Environ Assess Manag 2015;11:397–403. © 2015 SETAC Key Points An LCA comparison between Mediterranean annual and perennial feedstocks was conducted to explore their potential use for biorefinery purposes. Environmental constraints of crops fiber sorghum (annual) and giant reed (perennial), which exhibit high productivity under drought conditions, were investigated. Total burdens were largely affected by direct field emissions following fertilizer application. The perennial crop entailed a better environmental performance with reduced input and emissions.
Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, GermanyPublisher:Oxford University Press (OUP) Zucaro, A.; Forte, A.; Fagnano, M.; Bastianoni, S.; Basosi, R.; Fierro, A.;Abstract Annual fiber sorghum (FS) and perennial giant reed (GR) cultivated in the Mediterranean area are interesting due to their high productivity under drought conditions and their potential use as lignocellulosic feedstock for biorefinery purposes. This study compares environmental constraints related to FS and GR produced on experimental farms (in the Campania region) using an attributional life cycle assessment (LCA) approach through appropriate modeling of the perennial cultivation. For both crops, primary data were available for agricultural management. Direct field emissions (DFEs) were computed, including the potential soil carbon storage (SCS). Giant reed showed the lowest burdens for all impact categories analyzed (most were in the range of 40%–80% of FS values). More apparent were the differences for climate change and freshwater eutrophication (respectively 80% and 81% lower for GR compared to FS). These results are due to the short-term SCS, experimentally detected in the perennial GR crop (about 0.25 ton C ha−1yr−1, with a global warming offsetting potential of about 0.03 ton CO2/tonGR dry biomass). The results are also due to the annual application of triple superphosphate at the sowing fertilization phase for FS, which occurs differently than it does for GR. Phosphorous fertilization was performed only when crops were being established and therefore properly spread along the overall crop lifetime. For both crops, after normalization, terrestrial acidification and particulate matter formation were relevant impact categories, as a consequence of the NH3 DFE by volatilization after urea were spread superficially. Therefore, the results suggest higher environmental benefits of the perennial crop than the annual crop. Integr Environ Assess Manag 2015;11:397–403. © 2015 SETAC Key Points An LCA comparison between Mediterranean annual and perennial feedstocks was conducted to explore their potential use for biorefinery purposes. Environmental constraints of crops fiber sorghum (annual) and giant reed (perennial), which exhibit high productivity under drought conditions, were investigated. Total burdens were largely affected by direct field emissions following fertilizer application. The perennial crop entailed a better environmental performance with reduced input and emissions.
Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Usiena air - Univers... arrow_drop_down Integrated Environmental Assessment and ManagementArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversità degli Studi di Siena: USiena airArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Integrated Environmental Assessment and ManagementArticle . 2016Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ieam.1604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 FrancePublisher:MDPI AG Mathevet, Raphaël; Allouche, Aurélien; Nicolas, Laurence; Mitroi, Veronica; Fabricius, Christo; Guerbois, Chloe; Anderies, John;doi: 10.3390/su10114171
Social conflicts related to biodiversity conservation and adaptation policy to climate change in coastal areas illustrate the need to reinforce understanding of the “matters of concern” as well as the “matters of fact”. In this paper, we argue that we must rethink adaptation from a new perspective, considering that humans together function as both ecological actors and social actors. Using international examples from the UNESCO world biosphere reserve network, we show that an ontological perspective may provide a simple and compact way to think about coupled infrastructure systems and systematic formalism, allowing for understanding of the relational matrix between actors, institutions and ecosystems. We contend that our formalism responds to three challenges. First, it encompasses the different regional contexts and policies that rely on the same ontology. Second, it provides a method to relate any local adaptation plan to the conservation paradigms that originate from the ecological modernization of policies. Third, it facilitates the discovery of drivers and processes involved in adaptation and management regime shifts by highlighting the way contextual factors configure, determine the structure of the action situation of the Institutional Analysis and Development framework (IAD) (Ostrom 2005), and how it operates.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 FrancePublisher:MDPI AG Mathevet, Raphaël; Allouche, Aurélien; Nicolas, Laurence; Mitroi, Veronica; Fabricius, Christo; Guerbois, Chloe; Anderies, John;doi: 10.3390/su10114171
Social conflicts related to biodiversity conservation and adaptation policy to climate change in coastal areas illustrate the need to reinforce understanding of the “matters of concern” as well as the “matters of fact”. In this paper, we argue that we must rethink adaptation from a new perspective, considering that humans together function as both ecological actors and social actors. Using international examples from the UNESCO world biosphere reserve network, we show that an ontological perspective may provide a simple and compact way to think about coupled infrastructure systems and systematic formalism, allowing for understanding of the relational matrix between actors, institutions and ecosystems. We contend that our formalism responds to three challenges. First, it encompasses the different regional contexts and policies that rely on the same ontology. Second, it provides a method to relate any local adaptation plan to the conservation paradigms that originate from the ecological modernization of policies. Third, it facilitates the discovery of drivers and processes involved in adaptation and management regime shifts by highlighting the way contextual factors configure, determine the structure of the action situation of the Institutional Analysis and Development framework (IAD) (Ostrom 2005), and how it operates.
Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2071-1050/10/11/4171/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10114171&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United Kingdom, NetherlandsPublisher:Frontiers Media SA Funded by:EC | CAT, EC | RAVENEC| CAT ,EC| RAVENAuthors: René R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; +10 AuthorsRené R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; Surendra Adhikari; Argha Banerjee; Francesca Pellicciotti; Francesca Pellicciotti; Ludovicus P. H. van Beek; Marc F. P. Bierkens; Marc F. P. Bierkens; Arthur F. Lutz; Arthur F. Lutz; Walter W. Immerzeel;This study aims at developing and applying a spatially-distributed coupled glacier mass balance and ice-flow model to attribute the response of glaciers to natural and anthropogenic climate change. We focus on two glaciers with contrasting surface characteristics: a debris-covered glacier (Langtang Glacier in Nepal) and a clean-ice glacier (Hintereisferner in Austria). The model is applied from the end of the Little Ice Age (1850) to the present-day (2016) and is forced with four bias-corrected General Circulation Models (GCMs) from the historical experiment of the CMIP5 archive. The selected GCMs represent region-specific warm-dry, warm-wet, cold-dry, and cold-wet climate conditions. To isolate the effects of anthropogenic climate change on glacier mass balance and flow runs from these GCMs with and without further anthropogenic forcing after 1970 until 2016 are selected. The outcomes indicate that both glaciers experience the largest reduction in area and volume under warm climate conditions, whereas area and volume reductions are smaller under cold climate conditions. Simultaneously with changes in glacier area and volume, surface velocities generally decrease over time. Without further anthropogenic forcing the results reveal a 3% (9%) smaller decline in glacier area (volume) for the debris-covered glacier and a 18% (39%) smaller decline in glacier area (volume) for the clean-ice glacier. The difference in the magnitude between the two glaciers can mainly be attributed to differences in the response time of the glaciers, where the clean-ice glacier shows a much faster response to climate change. We conclude that the response of the two glaciers can mainly be attributed to anthropogenic climate change and that the impact is larger on the clean-ice glacier. The outcomes show that the model performs well under different climate conditions and that the developed approach can be used for regional-scale glacio-hydrological modeling.
CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United Kingdom, United Kingdom, NetherlandsPublisher:Frontiers Media SA Funded by:EC | CAT, EC | RAVENEC| CAT ,EC| RAVENAuthors: René R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; +10 AuthorsRené R. Wijngaard; Jakob F. Steiner; Philip D. A. Kraaijenbrink; Christoph Klug; Surendra Adhikari; Argha Banerjee; Francesca Pellicciotti; Francesca Pellicciotti; Ludovicus P. H. van Beek; Marc F. P. Bierkens; Marc F. P. Bierkens; Arthur F. Lutz; Arthur F. Lutz; Walter W. Immerzeel;This study aims at developing and applying a spatially-distributed coupled glacier mass balance and ice-flow model to attribute the response of glaciers to natural and anthropogenic climate change. We focus on two glaciers with contrasting surface characteristics: a debris-covered glacier (Langtang Glacier in Nepal) and a clean-ice glacier (Hintereisferner in Austria). The model is applied from the end of the Little Ice Age (1850) to the present-day (2016) and is forced with four bias-corrected General Circulation Models (GCMs) from the historical experiment of the CMIP5 archive. The selected GCMs represent region-specific warm-dry, warm-wet, cold-dry, and cold-wet climate conditions. To isolate the effects of anthropogenic climate change on glacier mass balance and flow runs from these GCMs with and without further anthropogenic forcing after 1970 until 2016 are selected. The outcomes indicate that both glaciers experience the largest reduction in area and volume under warm climate conditions, whereas area and volume reductions are smaller under cold climate conditions. Simultaneously with changes in glacier area and volume, surface velocities generally decrease over time. Without further anthropogenic forcing the results reveal a 3% (9%) smaller decline in glacier area (volume) for the debris-covered glacier and a 18% (39%) smaller decline in glacier area (volume) for the clean-ice glacier. The difference in the magnitude between the two glaciers can mainly be attributed to differences in the response time of the glaciers, where the clean-ice glacier shows a much faster response to climate change. We conclude that the response of the two glaciers can mainly be attributed to anthropogenic climate change and that the impact is larger on the clean-ice glacier. The outcomes show that the model performs well under different climate conditions and that the developed approach can be used for regional-scale glacio-hydrological modeling.
CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Frontiers in Earth ScienceArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/feart.2019.00143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Scotto di Perta, Ester; Cesaro, Alessandra; Pindozzi, Stefania; Frunzo, Luigi; Esposito, Giovanni; Papirio, Stefano;doi: 10.3390/en15145032
handle: 11588/891087
This study investigates the dark fermentation of fruit and vegetable waste under mesophilic conditions (30–34 °C), as a valorization route for H2 and volatile fatty acids production, simulating the open market waste composition over the year in two Mediterranean countries. Specifically, the study focuses on the effect of the (i) seasonal variability, (ii) initial pH, and (iii) substrate/inoculum ratio on the yields and composition of the main end products. Concerning the seasonal variation, the summer and spring mixtures led to +16.8 and +21.7% higher H2 production than the winter/autumn mixture, respectively. Further investigation on the least productive substrate (winter/autumn) led to 193.0 ± 7.4 NmL of H2 g VS−1 at a pH of 5.5 and a substrate/inoculum of 1. With the same substrate, at a pH of 7.5, the highest acetic acid yield of 7.0 mmol/g VS was observed, with acetic acid corresponding to 78.2% of the total acids. Whereas a substrate/inoculum of 3 resulted in the lowest H2 yield, amounting to 111.2 ± 7.6 NmL of H2 g VS−1, due to a decrease of the pH to 4.8, which likely caused an inhibitory effect by undissociated acids. This study demonstrates that dark fermentation can be a valuable strategy to efficiently manage such leftovers, rather than landfilling or improperly treating them.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Scotto di Perta, Ester; Cesaro, Alessandra; Pindozzi, Stefania; Frunzo, Luigi; Esposito, Giovanni; Papirio, Stefano;doi: 10.3390/en15145032
handle: 11588/891087
This study investigates the dark fermentation of fruit and vegetable waste under mesophilic conditions (30–34 °C), as a valorization route for H2 and volatile fatty acids production, simulating the open market waste composition over the year in two Mediterranean countries. Specifically, the study focuses on the effect of the (i) seasonal variability, (ii) initial pH, and (iii) substrate/inoculum ratio on the yields and composition of the main end products. Concerning the seasonal variation, the summer and spring mixtures led to +16.8 and +21.7% higher H2 production than the winter/autumn mixture, respectively. Further investigation on the least productive substrate (winter/autumn) led to 193.0 ± 7.4 NmL of H2 g VS−1 at a pH of 5.5 and a substrate/inoculum of 1. With the same substrate, at a pH of 7.5, the highest acetic acid yield of 7.0 mmol/g VS was observed, with acetic acid corresponding to 78.2% of the total acids. Whereas a substrate/inoculum of 3 resulted in the lowest H2 yield, amounting to 111.2 ± 7.6 NmL of H2 g VS−1, due to a decrease of the pH to 4.8, which likely caused an inhibitory effect by undissociated acids. This study demonstrates that dark fermentation can be a valuable strategy to efficiently manage such leftovers, rather than landfilling or improperly treating them.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/14/5032/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15145032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu