Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Source
  • Research community
    Clear
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
144 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • AU
  • IN
  • Transport Research

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hendrickson, Chris T; Cicas, Gyorgyi; Matthews, Scott;

    Indicators of sustainability and environmental performance can be useful for comparing modes, discerning trends, and formulating appropriate policies. This paper considers the performance of U.S. transportation service sectors through use of 1992 and 1997 benchmark input–output models. Use of these models permits assessment of not only the direct performance of the sectors but also the supply chain impacts required for operation of the transportation sectors. Consideration of indirect impacts is critical for assessment of the overall costs and impacts of particular products or services. Six transportation service sectors (air, rail, water, truck, transit, and pipeline) are examined. Economic impact, energy, greenhouse gas emissions, and toxic emissions are examined. The transportation sectors use large amounts of energy, both in total and per dollar of output and on a per service basis. Pipeline and water transportation have particularly large energy requirements per dollar of output, likely reflecting higher energy intensity and lower labor intensity in these modes. Truck transportation is the most energy intensive of the freight transportation modes per ton-mile of service, but it has a trend toward greater energy efficiency. For greenhouse gas emissions, truck, water, and air transportation have the highest emissions per dollar of output. Water transportation freight rates are sufficiently low that emissions on a per ton-mile basis would be correspondingly low. Finally, the supply chain (indirect) toxic emissions per dollar of output are highest for rail and pipeline transportation. There is considerable work to be done to improve the overall sustainability of the different transportation modes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    9
    citations9
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hendrickson, Chris T; Cicas, Gyorgyi; Matthews, Scott;

    Indicators of sustainability and environmental performance can be useful for comparing modes, discerning trends, and formulating appropriate policies. This paper considers the performance of U.S. transportation service sectors through use of 1992 and 1997 benchmark input–output models. Use of these models permits assessment of not only the direct performance of the sectors but also the supply chain impacts required for operation of the transportation sectors. Consideration of indirect impacts is critical for assessment of the overall costs and impacts of particular products or services. Six transportation service sectors (air, rail, water, truck, transit, and pipeline) are examined. Economic impact, energy, greenhouse gas emissions, and toxic emissions are examined. The transportation sectors use large amounts of energy, both in total and per dollar of output and on a per service basis. Pipeline and water transportation have particularly large energy requirements per dollar of output, likely reflecting higher energy intensity and lower labor intensity in these modes. Truck transportation is the most energy intensive of the freight transportation modes per ton-mile of service, but it has a trend toward greater energy efficiency. For greenhouse gas emissions, truck, water, and air transportation have the highest emissions per dollar of output. Water transportation freight rates are sufficiently low that emissions on a per ton-mile basis would be correspondingly low. Finally, the supply chain (indirect) toxic emissions per dollar of output are highest for rail and pipeline transportation. There is considerable work to be done to improve the overall sustainability of the different transportation modes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    9
    citations9
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kashem M. Muttaqi;
    Kashem M. Muttaqi
    ORCID
    Harvested from ORCID Public Data File

    Kashem M. Muttaqi in OpenAIRE
    orcid Eby Isac;
    Eby Isac
    ORCID
    Harvested from ORCID Public Data File

    Eby Isac in OpenAIRE
    orcid Anand Mandal;
    Anand Mandal
    ORCID
    Harvested from ORCID Public Data File

    Anand Mandal in OpenAIRE
    Danny Sutanto; +1 Authors

    The era of the electrified transportation system is fast approaching. Although the socioeconomic and environmental benefits of electric vehicles (EVs) have contributed to their large-scale utilization, it has also created a huge load demand on the existing power grids throughout the world. Moreover, fast, super-fast, and ultra-super-fast charging stations are under development, some of which are now in the markets. These have the potential to cause power quality issues such as charging transients, rapid voltage fluctuations, and harmonics in the power grids. Moreover, EVs can participate as mobile storage to provide vehicle-to-grid (V2G) support and ancillary services. There are still some barriers to the wide implementation of V2G systems. This paper addresses these issues and provides a review of the state-of-the-art EV technologies and their impacts on power grids. This paper also investigates the impacts of random and fluctuating EV fast-charging loads on the electric power grids, mainly considering the random connection of EVs to the power grids through DC fast-charging stations as the principal source of fluctuating EV loads. A practical electrical grid of Wollongong, New South Wales, Australia has been considered in this work to separately analyze the impacts of constant current (CC) and constant voltage (CV) charging modes upon the grid. Furthermore, design and modeling of three different commercial DC fast charger connections (CHAdeMO, SAE CCS, and ChargePoint Express 200), with separate CC-CV charging modes of the DC fast chargers have been incorporated. To quantify the impacts, two separate scenarios were examined using a simulation platform, with case studies conducted to determine the impacts on the power grid. The first scenario involved three fast charging stations, while the second scenario featured ten stations that were able to charge six and twenty electric vehicles respectively, with various load combinations considered. Each of these scenarios was analyzed under different conditions to ...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electric Power Systems Research
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electric Power Systems Research
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Kashem M. Muttaqi;
    Kashem M. Muttaqi
    ORCID
    Harvested from ORCID Public Data File

    Kashem M. Muttaqi in OpenAIRE
    orcid Eby Isac;
    Eby Isac
    ORCID
    Harvested from ORCID Public Data File

    Eby Isac in OpenAIRE
    orcid Anand Mandal;
    Anand Mandal
    ORCID
    Harvested from ORCID Public Data File

    Anand Mandal in OpenAIRE
    Danny Sutanto; +1 Authors

    The era of the electrified transportation system is fast approaching. Although the socioeconomic and environmental benefits of electric vehicles (EVs) have contributed to their large-scale utilization, it has also created a huge load demand on the existing power grids throughout the world. Moreover, fast, super-fast, and ultra-super-fast charging stations are under development, some of which are now in the markets. These have the potential to cause power quality issues such as charging transients, rapid voltage fluctuations, and harmonics in the power grids. Moreover, EVs can participate as mobile storage to provide vehicle-to-grid (V2G) support and ancillary services. There are still some barriers to the wide implementation of V2G systems. This paper addresses these issues and provides a review of the state-of-the-art EV technologies and their impacts on power grids. This paper also investigates the impacts of random and fluctuating EV fast-charging loads on the electric power grids, mainly considering the random connection of EVs to the power grids through DC fast-charging stations as the principal source of fluctuating EV loads. A practical electrical grid of Wollongong, New South Wales, Australia has been considered in this work to separately analyze the impacts of constant current (CC) and constant voltage (CV) charging modes upon the grid. Furthermore, design and modeling of three different commercial DC fast charger connections (CHAdeMO, SAE CCS, and ChargePoint Express 200), with separate CC-CV charging modes of the DC fast chargers have been incorporated. To quantify the impacts, two separate scenarios were examined using a simulation platform, with case studies conducted to determine the impacts on the power grid. The first scenario involved three fast charging stations, while the second scenario featured ten stations that were able to charge six and twenty electric vehicles respectively, with various load combinations considered. Each of these scenarios was analyzed under different conditions to ...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electric Power Systems Research
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electric Power Syste...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electric Power Systems Research
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wenming Shi; orcid Fuyong Yang;
    Fuyong Yang
    ORCID
    Harvested from ORCID Public Data File

    Fuyong Yang in OpenAIRE
    Xuehao Feng; Yiyang Liu; +1 Authors

    Carbon dioxide (CO 2 ) emissions reduction has become an ever-growing concern in China and the government has proposed the goals of carbon peak and carbon neutrality. To better address this concern, this work pays particular attention to high-speed railway (HSR) operations and examines their spatiotemporal effects and potential mechanism on CO 2 emissions. Using a geographically and temporally weighted regression (GTWR) model to fit a balanced panel dataset from the period 2008 to 2018, we have the following main findings. First, the GTWR model performs better than the pooled panel regression model as it considers temporal and spatial variations in factors of CO 2 emissions simultaneously. Second, the temporally varying coefficients of HSR operations indicate their consistent contributions to emissions reduction, suggesting that the national development of HSRs can provide significant emissions reduction benefits. Third, as revealed by the spatially varying coefficients of HSR operations, most provinces can mitigate CO 2 emissions by promoting HSRs, particularly in Shanxi, Hebei, and Shaanxi, owing to the larger contributions of HSR operations to CO 2 emissions reduction. Finally, the contributions of HSR operations to emissions reduction can be transmitted through the mechanism of technological progress. These findings can offer valuable insights into cross-collaborative and province-specific policymaking for mitigating CO 2 emissions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wenming Shi; orcid Fuyong Yang;
    Fuyong Yang
    ORCID
    Harvested from ORCID Public Data File

    Fuyong Yang in OpenAIRE
    Xuehao Feng; Yiyang Liu; +1 Authors

    Carbon dioxide (CO 2 ) emissions reduction has become an ever-growing concern in China and the government has proposed the goals of carbon peak and carbon neutrality. To better address this concern, this work pays particular attention to high-speed railway (HSR) operations and examines their spatiotemporal effects and potential mechanism on CO 2 emissions. Using a geographically and temporally weighted regression (GTWR) model to fit a balanced panel dataset from the period 2008 to 2018, we have the following main findings. First, the GTWR model performs better than the pooled panel regression model as it considers temporal and spatial variations in factors of CO 2 emissions simultaneously. Second, the temporally varying coefficients of HSR operations indicate their consistent contributions to emissions reduction, suggesting that the national development of HSRs can provide significant emissions reduction benefits. Third, as revealed by the spatially varying coefficients of HSR operations, most provinces can mitigate CO 2 emissions by promoting HSRs, particularly in Shanxi, Hebei, and Shaanxi, owing to the larger contributions of HSR operations to CO 2 emissions reduction. Finally, the contributions of HSR operations to emissions reduction can be transmitted through the mechanism of technological progress. These findings can offer valuable insights into cross-collaborative and province-specific policymaking for mitigating CO 2 emissions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Cherry, Christopher R;
    Cherry, Christopher R
    ORCID
    Harvested from ORCID Public Data File

    Cherry, Christopher R in OpenAIRE
    Deakin, Elizabeth; Higgins, Nathan; Huey, S Brian;

    Many cities in the United States are facing challenges associated with antiquated urban arterials, whose purpose has changed greatly since their development. Once considered the main streets of the city, with thriving businesses and attractive residential development, many have deteriorated over the decades for a number of reasons, including shifting demand for housing and retail development and the construction of parallel high-speed urban expressways. Because of the complexity of the problems associated with these arterials, a great challenge of transportation and land use planners is to develop a systems-level approach to revitalize and reinvent these arterials in a manner that encourages environmental, economic, and social sustainability. Presented is a methodology to revitalize multimodal urban arterials that includes land use planning, traffic and transit operations management, street redesign, and community participation to improve the conditions of such arterials. Analysis is carried out by using these principles on San Pablo Avenue, a major arterial in the San Francisco Bay Area in California. By using these analysis techniques, land use and transportation recommendations are made that will facilitate sustainable development along this corridor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Cherry, Christopher R;
    Cherry, Christopher R
    ORCID
    Harvested from ORCID Public Data File

    Cherry, Christopher R in OpenAIRE
    Deakin, Elizabeth; Higgins, Nathan; Huey, S Brian;

    Many cities in the United States are facing challenges associated with antiquated urban arterials, whose purpose has changed greatly since their development. Once considered the main streets of the city, with thriving businesses and attractive residential development, many have deteriorated over the decades for a number of reasons, including shifting demand for housing and retail development and the construction of parallel high-speed urban expressways. Because of the complexity of the problems associated with these arterials, a great challenge of transportation and land use planners is to develop a systems-level approach to revitalize and reinvent these arterials in a manner that encourages environmental, economic, and social sustainability. Presented is a methodology to revitalize multimodal urban arterials that includes land use planning, traffic and transit operations management, street redesign, and community participation to improve the conditions of such arterials. Analysis is carried out by using these principles on San Pablo Avenue, a major arterial in the San Francisco Bay Area in California. By using these analysis techniques, land use and transportation recommendations are made that will facilitate sustainable development along this corridor.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Haward, Marcus;
    Haward, Marcus
    ORCID
    Harvested from ORCID Public Data File

    Haward, Marcus in OpenAIRE
    Davidson, Julie; orcid Lockwood, Michael;
    Lockwood, Michael
    ORCID
    Harvested from ORCID Public Data File

    Lockwood, Michael in OpenAIRE
    orcid Hockings, Marc;
    Hockings, Marc
    ORCID
    Harvested from ORCID Public Data File

    Hockings, Marc in OpenAIRE
    +2 Authors

    This paper explores the utility of qualitative scenario approaches to examine the potential impacts of climate change on marine biodiversity conservation on the east coast of Australia. This region is large and diverse, with considerable variation in marine biodiversity and, concomitantly, considerable diversity in the likely impacts from climate change. The results reinforce a number of key points. Engaging with stakeholders in scenario planning provides not only a focus to discuss the future in a disciplined way, but also provides ongoing reference points for contemporary decision making and planning. The paper illustrates how qualitative scenario planning provides opportunities to address the challenges of marine biodiversity conservation in a changing environment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Haward, Marcus;
    Haward, Marcus
    ORCID
    Harvested from ORCID Public Data File

    Haward, Marcus in OpenAIRE
    Davidson, Julie; orcid Lockwood, Michael;
    Lockwood, Michael
    ORCID
    Harvested from ORCID Public Data File

    Lockwood, Michael in OpenAIRE
    orcid Hockings, Marc;
    Hockings, Marc
    ORCID
    Harvested from ORCID Public Data File

    Hockings, Marc in OpenAIRE
    +2 Authors

    This paper explores the utility of qualitative scenario approaches to examine the potential impacts of climate change on marine biodiversity conservation on the east coast of Australia. This region is large and diverse, with considerable variation in marine biodiversity and, concomitantly, considerable diversity in the likely impacts from climate change. The results reinforce a number of key points. Engaging with stakeholders in scenario planning provides not only a focus to discuss the future in a disciplined way, but also provides ongoing reference points for contemporary decision making and planning. The paper illustrates how qualitative scenario planning provides opportunities to address the challenges of marine biodiversity conservation in a changing environment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lethco, Trent; Davis, Allison; Weber, Steven; Sanagavarapu, Suchitra;

    Lower Manhattan (LM) is America's fourth-largest central business district and one of the oldest and densest areas in New York City. It is also New York City's fastest-growing residential neighborhood and contains some of the highest levels of pedestrian, transit, and vehicular activity in America. Since September 11, 2001, redevelopment has dramatically transformed the area into a vibrant 24/7 live–work–visit community. The changes present an unprecedented opportunity to create a more livable and environmentally sustainable neighborhood by reducing traffic and managing parking while giving residents and employees better, greener mobility options. Consequently, the city is focused on finding new ways to manage competing demands for different uses of limited street space. Improving street management is paramount to improving the quality of public space and speeding LM's revitalization. In 2004, the Lower Manhattan Development Corporation funded the New York City Economic Development Corporation and the New York City Department of Transportation to contract Arup to undertake a multi-year comprehensive planning study to consider ways to reduce traffic congestion, manage placard parking, and create complete streets and engaging public spaces in LM. This paper discusses the necessity for and development of a proposed street management framework to help guide the city in meeting the transportation and public realm needs of LM's residents, employees, tourists, and businesses. As of October 2008, the project is ongoing; the proposed framework is still conceptual and has not yet been implemented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lethco, Trent; Davis, Allison; Weber, Steven; Sanagavarapu, Suchitra;

    Lower Manhattan (LM) is America's fourth-largest central business district and one of the oldest and densest areas in New York City. It is also New York City's fastest-growing residential neighborhood and contains some of the highest levels of pedestrian, transit, and vehicular activity in America. Since September 11, 2001, redevelopment has dramatically transformed the area into a vibrant 24/7 live–work–visit community. The changes present an unprecedented opportunity to create a more livable and environmentally sustainable neighborhood by reducing traffic and managing parking while giving residents and employees better, greener mobility options. Consequently, the city is focused on finding new ways to manage competing demands for different uses of limited street space. Improving street management is paramount to improving the quality of public space and speeding LM's revitalization. In 2004, the Lower Manhattan Development Corporation funded the New York City Economic Development Corporation and the New York City Department of Transportation to contract Arup to undertake a multi-year comprehensive planning study to consider ways to reduce traffic congestion, manage placard parking, and create complete streets and engaging public spaces in LM. This paper discusses the necessity for and development of a proposed street management framework to help guide the city in meeting the transportation and public realm needs of LM's residents, employees, tourists, and businesses. As of October 2008, the project is ongoing; the proposed framework is still conceptual and has not yet been implemented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nerenberg, V; Bernard, M J; Collins, N E;

    Presented is a summary of the evaluation of the first 2.5 years (November 1995–March 1998) of the San Francisco Bay Area Station-Car Demonstration. The 40 station cars were small battery-powered electric cars used for access to and egress from the Bay Area Rapid Transit District stations and for other local trips. The demonstration was a preliminary test of a larger vision for solving several problems associated with line-haul mass transit. Its purpose was to determine the viability of electric vehicles for short, everyday trips in a variety of settings: between home and a station; between a station and a work site; and as pool cars used at work sites. Other short trips were encouraged during the workday or during evenings and weekends when the cars were at participants’ homes. The participants and their opinions of the concept before entering and during the demonstration are described. Modal shifts, air emission benefits, energy impact, and many nonquantifiable effects are presented. A “10,000 station car” scenario based on data from the demonstration is presented to show the impact of a larger station-car deployment. Many of the lessons learned from the experiment are presented with the overall conclusions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    13
    citations13
    popularityTop 10%
    influenceTop 1%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nerenberg, V; Bernard, M J; Collins, N E;

    Presented is a summary of the evaluation of the first 2.5 years (November 1995–March 1998) of the San Francisco Bay Area Station-Car Demonstration. The 40 station cars were small battery-powered electric cars used for access to and egress from the Bay Area Rapid Transit District stations and for other local trips. The demonstration was a preliminary test of a larger vision for solving several problems associated with line-haul mass transit. Its purpose was to determine the viability of electric vehicles for short, everyday trips in a variety of settings: between home and a station; between a station and a work site; and as pool cars used at work sites. Other short trips were encouraged during the workday or during evenings and weekends when the cars were at participants’ homes. The participants and their opinions of the concept before entering and during the demonstration are described. Modal shifts, air emission benefits, energy impact, and many nonquantifiable effects are presented. A “10,000 station car” scenario based on data from the demonstration is presented to show the impact of a larger station-car deployment. Many of the lessons learned from the experiment are presented with the overall conclusions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    13
    citations13
    popularityTop 10%
    influenceTop 1%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Neil J. Holbrook;
    Neil J. Holbrook
    ORCID
    Harvested from ORCID Public Data File

    Neil J. Holbrook in OpenAIRE
    orcid Piers K. Dunstan;
    Piers K. Dunstan
    ORCID
    Harvested from ORCID Public Data File

    Piers K. Dunstan in OpenAIRE
    orcid James S. Risbey;
    James S. Risbey
    ORCID
    Harvested from ORCID Public Data File

    James S. Risbey in OpenAIRE
    orcid Quentin A Hanich;
    Quentin A Hanich
    ORCID
    Harvested from ORCID Public Data File

    Quentin A Hanich in OpenAIRE
    +7 Authors

    Climate and weather have profound effects on economies, the food security and livelihoods of communities throughout the Pacific Island region. These effects are particularly important for small-scale fisheries and occur, for example, through changes in sea surface temperature, primary productivity, ocean currents, rainfall patterns, and through cyclones. This variability has impacts over both short and long time scales. We differentiate climate predictions (the actual state of climate at a particular point in time) from climate projections (the average state of climate over long time scales). The ability to predict environmental conditions over the time scale of months to decades will assist governments and coastal communities to reduce the impacts of climatic variability and take advantage of opportunities. We explore the potential to make reliable climate predictions over time scales of six months to 10 years for use by policy makers, managers and communities. We also describe how climate predictions can be used to make decisions on short time scales that should be of direct benefit to sustainable management of small-scale fisheries, and to disaster risk reduction, in Small-Island Developing States in the Pacific.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Neil J. Holbrook;
    Neil J. Holbrook
    ORCID
    Harvested from ORCID Public Data File

    Neil J. Holbrook in OpenAIRE
    orcid Piers K. Dunstan;
    Piers K. Dunstan
    ORCID
    Harvested from ORCID Public Data File

    Piers K. Dunstan in OpenAIRE
    orcid James S. Risbey;
    James S. Risbey
    ORCID
    Harvested from ORCID Public Data File

    James S. Risbey in OpenAIRE
    orcid Quentin A Hanich;
    Quentin A Hanich
    ORCID
    Harvested from ORCID Public Data File

    Quentin A Hanich in OpenAIRE
    +7 Authors

    Climate and weather have profound effects on economies, the food security and livelihoods of communities throughout the Pacific Island region. These effects are particularly important for small-scale fisheries and occur, for example, through changes in sea surface temperature, primary productivity, ocean currents, rainfall patterns, and through cyclones. This variability has impacts over both short and long time scales. We differentiate climate predictions (the actual state of climate at a particular point in time) from climate projections (the average state of climate over long time scales). The ability to predict environmental conditions over the time scale of months to decades will assist governments and coastal communities to reduce the impacts of climatic variability and take advantage of opportunities. We explore the potential to make reliable climate predictions over time scales of six months to 10 years for use by policy makers, managers and communities. We also describe how climate predictions can be used to make decisions on short time scales that should be of direct benefit to sustainable management of small-scale fisheries, and to disaster risk reduction, in Small-Island Developing States in the Pacific.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Marine Policy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    28
    citations28
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Marine Policy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Zeinab Moghaddam;
    Zeinab Moghaddam
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Zeinab Moghaddam in OpenAIRE
    orcid Iftekhar Ahmad;
    Iftekhar Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Iftekhar Ahmad in OpenAIRE
    orcid Daryoush Habibi;
    Daryoush Habibi
    ORCID
    Harvested from ORCID Public Data File

    Daryoush Habibi in OpenAIRE
    Quoc Viet Phung;

    Although the concept of transportation electrification holds enormous prospects in addressing the global environmental pollution problem, in reality the market penetration of plug-in electric vehicles (PEVs) has been very low. Consumer concerns over the limited availability of charging facilities and unacceptably long charging periods are major factors behind this low penetration rate. From the perspective of the electricity grid, a longer PEV peak load period can potentially overlap with the residential peak load period, making energy management more challenging. A suitably designed charging strategy can help to address these concerns, which motivated us to conduct this research. In this paper, we present a smart charging strategy for a PEV network that offers multiple charging options, including ac level 2 charging, dc fast charging, and battery swapping facilities at charging stations. For a PEV requiring charging facilities, we model the issue of finding the optimal charging station as a multiobjective optimization problem, where the goal is to find a station that ensures the minimum charging time, travel time, and charging cost. We extend the model to a metaheuristic solution in the form of an ant colony optimization. Simulation results show that the proposed solution significantly reduces waiting time and charging cost.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Transportation Electrification
    Article . 2018 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    274
    citations274
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Transportation Electrification
      Article . 2018 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Zeinab Moghaddam;
    Zeinab Moghaddam
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Zeinab Moghaddam in OpenAIRE
    orcid Iftekhar Ahmad;
    Iftekhar Ahmad
    ORCID
    Harvested from ORCID Public Data File

    Iftekhar Ahmad in OpenAIRE
    orcid Daryoush Habibi;
    Daryoush Habibi
    ORCID
    Harvested from ORCID Public Data File

    Daryoush Habibi in OpenAIRE
    Quoc Viet Phung;

    Although the concept of transportation electrification holds enormous prospects in addressing the global environmental pollution problem, in reality the market penetration of plug-in electric vehicles (PEVs) has been very low. Consumer concerns over the limited availability of charging facilities and unacceptably long charging periods are major factors behind this low penetration rate. From the perspective of the electricity grid, a longer PEV peak load period can potentially overlap with the residential peak load period, making energy management more challenging. A suitably designed charging strategy can help to address these concerns, which motivated us to conduct this research. In this paper, we present a smart charging strategy for a PEV network that offers multiple charging options, including ac level 2 charging, dc fast charging, and battery swapping facilities at charging stations. For a PEV requiring charging facilities, we model the issue of finding the optimal charging station as a multiobjective optimization problem, where the goal is to find a station that ensures the minimum charging time, travel time, and charging cost. We extend the model to a metaheuristic solution in the form of an ant colony optimization. Simulation results show that the proposed solution significantly reduces waiting time and charging cost.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Transportation Electrification
    Article . 2018 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    274
    citations274
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Transportation Electrification
      Article . 2018 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Javed, Muhamed Awais; orcid Khan, Jamil Yusef;
    Khan, Jamil Yusef
    ORCID
    Harvested from ORCID Public Data File

    Khan, Jamil Yusef in OpenAIRE
    orcid Ngo, Duy Trong;
    Ngo, Duy Trong
    ORCID
    Harvested from ORCID Public Data File

    Ngo, Duy Trong in OpenAIRE

    Electric vehicles (EVs) are an integral part of the future transportation systems due to enhanced fuel and energy conversion efficiency. The success of electric vehicle technology requires an efficient charging management system that ensures their timely fueling. To support such a service, vehicular ad hoc networks can be used to implement an information system for EV energy management. For this purpose, it is essential for the electric vehicles to reliably and timely exchange information with the information/control servers using infrastructure nodes (INs) deployed at different geographical locations. As the INs may be located farther away from the vehicles, robust multi-hop packet transmissions are required. In this chapter, we present the design considerations for an information system for EV energy management. We propose a vehicle-to-infrastructure and infrastructure-to-vehicle (V2I-I2V) information transmission system that efficiently delivers packets for EV energy management services by mitigating the broadcast storm and hidden node problems. Moreover, the proposed system provides a signaling mechanism to select the shortest path for the downlink I2V transmissions, a challenging task due to the mobile nature of vehicles. Simulation results show that the developed system offers a low delay and reduced number of packet transmissions for different vehicle densities and mobility conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Javed, Muhamed Awais; orcid Khan, Jamil Yusef;
    Khan, Jamil Yusef
    ORCID
    Harvested from ORCID Public Data File

    Khan, Jamil Yusef in OpenAIRE
    orcid Ngo, Duy Trong;
    Ngo, Duy Trong
    ORCID
    Harvested from ORCID Public Data File

    Ngo, Duy Trong in OpenAIRE

    Electric vehicles (EVs) are an integral part of the future transportation systems due to enhanced fuel and energy conversion efficiency. The success of electric vehicle technology requires an efficient charging management system that ensures their timely fueling. To support such a service, vehicular ad hoc networks can be used to implement an information system for EV energy management. For this purpose, it is essential for the electric vehicles to reliably and timely exchange information with the information/control servers using infrastructure nodes (INs) deployed at different geographical locations. As the INs may be located farther away from the vehicles, robust multi-hop packet transmissions are required. In this chapter, we present the design considerations for an information system for EV energy management. We propose a vehicle-to-infrastructure and infrastructure-to-vehicle (V2I-I2V) information transmission system that efficiently delivers packets for EV energy management services by mitigating the broadcast storm and hidden node problems. Moreover, the proposed system provides a signaling mechanism to select the shortest path for the downlink I2V transmissions, a challenging task due to the mobile nature of vehicles. Simulation results show that the developed system offers a low delay and reduced number of packet transmissions for different vehicle densities and mobility conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph