- home
- Advanced Search
- Energy Research
- US
- AT
- Karlsruhe Institute of Technology
- Energy Research
- US
- AT
- Karlsruhe Institute of Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Austria, Spain, Spain, France, Spain, Spain, Australia, Germany, Austria, ItalyPublisher:Korean Physical Society Funded by:FWF | Nucleosynthesis in the la...FWF| Nucleosynthesis in the lab-neutron-capture on Fe and NiGuerrero C.; Becares V.; Cano Ott D.; Fernandez Ordonez M.; Gonzalez Romero E.; Martin Fuertes F.; Martinez T.; Mendoza E.; Pina G.; Quinones J.; Vlachoudis V.; Calviani M.; Andriamonje S.; Brugger M.; Cerutti F.; Chiaveri E.; Ferrari A.; Kadi Y.; Lebbos E.; Berthoumieux E.; Gunsing F.; Andrzejewski J.; Marganiec J.; Perkowski J.; Audouin L.; Berthier B.; Tassan Got L.; Avrigeanu V.; Mirea M.; Becvar F.; Krticka M.; Belloni F.; M. Milazzo P.; Calvino F.; Cortes G.; B. Gomez Hornillos M.; Carrapico C.; F. Goncalves I.; Sarmento R.; Vaz P.; Colonna N.; Marrone S.; Moinul M.; Tagliente G.; Variale V.; Dillmann I.; Domingo Pardo C.; Heil M.; Duran I.; Paradela C.; Tarrio D.; Ganesan S.; Giubrone G.; L. Tain J.; Gramegna F.; F. Mastinu P.; Harrisopulos S.; Ioannides K.; Karadimos D.; Jericha E.; Leeb H.; Weiss C.; Kappeler F.; Lederer C.; Pavlik A.; Wallner A.; Lozano M.; Praena J.; M. Quesada J.; MASSIMI, CRISTIAN; VANNINI, GIANNI; Mengoni A.; Ventura A.; Mosconi M.; Nolte R.; Vlastou R.;doi: 10.3938/jkps.59.1624
handle: 11585/140000 , 1885/78826 , 2117/27869
After a halt of four years, the n TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and e cient cooling. The rst measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated ssion chambers, the n TOF Silicon Monitor, a Mi- croMegas detector with 10B and 235U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron uence. The spatial pro le of the beam has been studied with a specially designed \X-Y
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Authors: Michael Löffler; Michael Steffen; Michael Steffen; Karlheinz Schaber;Abstract A Triangle Cycle with a piston engine expansion unit is used to convert low temperature heat into electrical energy. In this process, the isentropic efficiency of the expansion unit is considered to be unknown, and a theoretical approach for the calculation of isentropic efficiency is presented. A number of influences are taken into account – dead volume, residual mass, liquid injection performance and wall heat transfer. Various working fluids are investigated in a wide range of temperatures (333K–573K), engine speeds (5 Hz–30 Hz) and stroke volumes (0.1 L–50 L). The isentropic efficiency of water as working fluid is in the range of 0.75–0.88 and drops significantly for high stroke volumes and engine speeds. In general, injection mass has the most impact on isentropic efficiency because it influences dead volume and injection performance. The injection mass increases with vapor density and therefore is significantly influenced by working fluid and temperatures. The Triangle Cycle is compared with Organic Rankine Cycles by using determined isentropic efficiency. The exergetic efficiency of the Triangle Cycle using water is up to 35–70% higher than that of supercritical Organic Rankine Cycles in situations with a heat source temperature of up to 450K.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Ghosh, D. S.; Chen, T. L.; Formica, N.; Hwang, J.; Bruder, I.; Pruneri, V.;Abstract We propose a novel transparent electrode consisting of silver (Ag)–aluminum doped zinc oxide (AZO)–nickel (Ni) deposited at room temperature on glass and polyethylene terephthalate (PET) for flexible organic photovoltaics. The electrode combines the high electrical conductivity and mechanical ductility of Ag, the transparency and antireflection of AZO and the high work function and stability of Ni. Environmental stability results confirmed that the electrode maintains its optical and electrical properties at both elevated temperature (500 °C) and under damp heat conditions (85 °C and 85% relative humidity). To demonstrate its functional potential, the electrode has been used as the transparent anode in an organic solar cell (OSC), which shows an efficiency of 2.6%, very close to the value (2.9%) obtained in a similar cell using the widely used indium tin oxide (ITO). With respect to ITO, the proposed transparent electrode has several advantages, including mechanical flexibility, room temperature processing and low cost.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEVal Snow; Lutz Merbold; Lutz Merbold; Robert M. Rees; Paul C. D. Newton; Katja Klumpp; Nina Buchmann; Raphaël Martin; Pete Smith; Kathrin Fuchs; Daniel Bretscher; Nuala Fitton; Lorenzo Brilli; Lorenzo Brilli; Cairistiona F.E. Topp; Mark Lieffering; Susanne Rolinski;handle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United Kingdom, Germany, GermanyPublisher:Elsevier BV Funded by:EC | TRIPOD, EC | reFUELEC| TRIPOD ,EC| reFUELJohannes Schmidt; Andrea N. Hahmann; Stefan Pfenninger; Sebastian Wehrle; Russell McKenna; Russell McKenna; Iain Staffell; Heidi Heinrichs; Detlef Stolten; Tim Tröndle; Martin Robinius; Stefan Höltinger; Johan Lilliestam; Jann Michael Weinand; David Severin Ryberg;handle: 2164/16924
Abstract A recent article in this journal claimed to assess the socio-technical potential for onshore wind energy in Europe. We find the article to be severely flawed and raise concerns in five general areas. Firstly, the term socio-technical is not precisely defined, and is used by the authors to refer to a potential that others term as merely technical. Secondly, the study fails to account for over a decade of research in wind energy resource assessments. Thirdly, there are multiple issues with the use of input data and, because the study is opaque about many details, the effect of these errors cannot be reproduced. Fourthly, the method assumes a very high wind turbine capacity density of 10.73 MW/km2 across 40% of the land area in Europe with a generic 30% capacity factor. Fifthly, the authors find an implausibly high onshore wind potential, with 120% more capacity and 70% more generation than the highest results given elsewhere in the literature. Overall, we conclude that new research at higher spatial resolutions can make a valuable contribution to wind resource potential assessments. However, due to the missing literature review, the lack of transparency and the overly simplistic methodology, Enevoldsen et al. (2019) potentially mislead fellow scientists, policy makers and the general public.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/2164/16924Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/2164/16924Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Report , Preprint , Journal 2020Embargo end date: 10 May 2020 United Kingdom, Spain, Italy, Croatia, United States, Italy, France, United Kingdom, Italy, Croatia, Italy, Croatia, Belgium, France, Turkey, Italy, Croatia, Germany, Italy, France, Italy, Germany, Belgium, Italy, Germany, Germany, Italy, Italy, United Kingdom, Belarus, Belarus, Belgium, Spain, Italy, France, United States, Switzerland, Italy, ItalyPublisher:Elsevier BV Funded by:DFG, EC | LHCTOPVLQ, EC | AMVA4NewPhysics +2 projectsDFG ,EC| LHCTOPVLQ ,EC| AMVA4NewPhysics ,EC| INSIGHTS ,GSRIAntonin Kveton; Marco Toliman Lucchini; Andromachi Tsirou; Luca Cadamuro; Jaana Kristiina Heikkilä; Dave M Newbold; David Saltzberg; Cécile Caillol; N. De Filippis; Petra Merkel; Jan Tomsa; M. Della Negra; David Jonathan Hofman; Stephen Sanders; Pushpalatha C Bhat; Daniel Gonzalez; Christopher West; Sandeep Bhowmik; Victor Golovtcov; G. B. Mohanty; E. Gurpinar Guler; Vyacheslav Klyukhin; Markus Seidel; Damir Devetak; Stephan Lammel; J. S. Lange; Paolo Ronchese; Paolo Ronchese; W. T. Hung; Stepan Obraztsov; Tommaso Dorigo; Dario Bisello; Dario Bisello; Raffaella Radogna; Milan Stojanovic; Quentin Python; Emanuela Barberis; J. R. González Fernández; Pedro Silva; Pedro G Mercadante; Grace Cummings; Marc Dejardin; Marta Verweij; P. Busson; Pascal Paganini; Willem Verbeke; Fabio Monti; Fabio Monti; Daniel Abercrombie; George Stephans; F. L. Fabbri; C. Baldenegro Barrera; P. E. Karchin; Matteo Cremonesi; James Wetzel; Jordan Martins; Marguerite Tonjes; D. Di Croce; L. J. Gutay; Jehad Mousa; Colin Bernet; W. Van Doninck; Kaya Tatar; Michael Dittmar; J. M. Grados Luyando; Hualin Mei; Marc Dobson; Maral Alyari; Paul Baillon; Nicholas Menendez; Yiwen Wen; Radek Zlebcik; A. Baden; Pietro Vischia; Mingshui Chen; Tilman Rohe; Haiyan Wang; Santiago Folgueras; P. Martinez Ruiz del Arbol; E. M. Da Costa; Altan Cakir; V. Monaco; K. H. M. Kwok; Christopher Hill; Gigi Rolandi; Basil Schneider; Alexander Ershov; Daniel Rosenzweig; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Prashant Shukla; Alicia Calderon; Candan Dozen; Marc Osherson; Eija Tuominen; Himal Acharya; Klaas Padeken; Davide Piccolo; Hugo Delannoy; Igor Lokhtin; Nadir Daci; Christophe Royon; Mauricio Thiel; W. De Boer; Cédric Prieels; A. Da Rold; C. A. Salazar González; Johannes Brandstetter; R. Loveless; Aleksandra Lelek; Frank Würthwein; Cristina Tuve; Inkyu Park; Didar Dobur; Elena Voevodina; Ivan Marchesini; Mariana Shopova; Y. Musienko; Bibhuprasad Mahakud; Jorma Tuominiemi; J. Duarte Campderros; Sumit Keshri; Ekaterina Kuznetsova; Pierluigi Zotto; Pierluigi Zotto; Salim Cerci; Fabrizio Palla; Zhen Hu; Daniel Winterbottom; Dinko Ferencek; Charles Maguire; Zoltan Gecse; Y. C. Yang; Graham Wilson; Andreas Albert; Ivan Mikulec; A. A. Bin Anuar; J. C. Freeman; Francesco Fiori; Frans Meijers; Patricia McBride; Raman Khurana; Joosep Pata; M. Bluj; D. Kim; Andreas Werner Jung; Gabriel Madigan; Attilio Santocchia; Yu. Andreev; Kristian Allan Hahn; M. Flechl; Rui Xiao; Igor Smirnov; Georg Steinbrück; Warren Clarida; Nathaniel Odell; G. Bagliesi; Silvano Tosi; Nicholas Smith; Tobias Pook; Thorsten Chwalek; Alexis Kalogeropoulos; Sourabh Dube; Ennio Monteil; Matthias Wolf; Caroline Collard; Dooyeon Gyun; I. Gonzalez Caballero; Aleko Khukhunaishvili; Yen-Jie Lee; Andrea Malara; Jane Nachtman; Magda Diamantopoulou; Janos Erö; Konstanty Sumorok; J. Suarez Gonzalez; Alessandra Fanfani; M. R. Adams; Z. Liu; Süleyman Durgut; Marek Walczak; Paolo Dini; Rainer Wallny; Michael Mulhearn; Charles C. Richardson; Igor Golutvin; Mircho Rodozov; Oleksii Toldaiev; Andreas Mussgiller; Marc Dünser; Maximilian Heindl; W. Ji; Sergei Gleyzer; Mayda Velasco; Gabriella Pasztor; Renato Potenza; A. Vorobyev; Stephen Robert Wagner;doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics. Physics Letters B, 804 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors: Julian Rominger; Csaba Farkas;Abstract Electric vehicles (EV) are treated as a breakthrough technology in the automotive market. The novelty of this technology also implicates that the incidence of these vehicles worldwide is still low. An important issue regarding EVs is the existence of proper charging infrastructure as waiting at charging stations due to an inadequate number of chargers can discourage EV owners. However, as the number of EVs and charging stations are low at present, real world experience is not available, so computer simulations are required for the planning of such charging stations. We developed a stochastic model in this paper that includes driving and charging behaviour of EV owners in Japan. The model is based on Monte Carlo methods and was implemented in MATLAB. We conducted simulations with this model to find out whether the existing infrastructure is adequate for the charging of a large number of EVs. The results indicate that Japan is well prepared for an increase in plug-in vehicles (PHEVs) in the near future: currently the country has 6 fast chargers for 100 electric cars and for this ratio - on average -, waiting probability at DC (direct current) fast chargers ranges lower than 5%, which is an acceptable value for EV owners. If, however, the ratio decreases, waiting probability increases exponentially.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2017.01.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2017.01.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, GermanyPublisher:Wiley Funded by:EC | EARLYWARNING, EC | BACCHUSEC| EARLYWARNING ,EC| BACCHUSEgbert H. van Nes; Marten Scheffer; Milena Holmgren; Chi Xu; Chi Xu; Arie Staal; Stijn Hantson;doi: 10.1002/ecy.1470
pmid: 27859090
AbstractAlthough canopy height has long been a focus of interest in ecology, it has remained difficult to study at large spatial scales. Recently, satellite‐borne LiDAR equipment produced the first systematic high resolution maps of vegetation height worldwide. Here we show that this new resource reveals three marked modes in tropical canopy height ~40, ~12, and ~2 m corresponding to forest, savanna, and treeless landscapes. The distribution of these modes is consistent with the often hypothesized forest‐savanna bistability and suggests that both states can be stable in areas with a mean annual precipitation between ~1,500 and ~2,000 mm. Although the canopy height states correspond largely to the much discussed tree cover states, there are differences, too. For instance, there are places with savanna‐like sparse tree cover that have a forest‐like high canopy, suggesting that rather than true savanna, those are thinned relicts of forest. This illustrates how complementary sets of remotely sensed indicators may provide increasingly sophisticated ways to study ecological phenomena at a global scale.
Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 15 Jan 2020 Denmark, Switzerland, GermanyPublisher:Elsevier BV Authors: Martin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; +5 AuthorsMartin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; Harpa Birgisdottir; Rolf Frischknecht; Guillaume Habert; Thomas Lützkendorf; Alexander Passer;Applied Energy, 258 ISSN:0306-2619 ISSN:1872-9118
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Austria, Spain, Spain, France, Spain, Spain, Australia, Germany, Austria, ItalyPublisher:Korean Physical Society Funded by:FWF | Nucleosynthesis in the la...FWF| Nucleosynthesis in the lab-neutron-capture on Fe and NiGuerrero C.; Becares V.; Cano Ott D.; Fernandez Ordonez M.; Gonzalez Romero E.; Martin Fuertes F.; Martinez T.; Mendoza E.; Pina G.; Quinones J.; Vlachoudis V.; Calviani M.; Andriamonje S.; Brugger M.; Cerutti F.; Chiaveri E.; Ferrari A.; Kadi Y.; Lebbos E.; Berthoumieux E.; Gunsing F.; Andrzejewski J.; Marganiec J.; Perkowski J.; Audouin L.; Berthier B.; Tassan Got L.; Avrigeanu V.; Mirea M.; Becvar F.; Krticka M.; Belloni F.; M. Milazzo P.; Calvino F.; Cortes G.; B. Gomez Hornillos M.; Carrapico C.; F. Goncalves I.; Sarmento R.; Vaz P.; Colonna N.; Marrone S.; Moinul M.; Tagliente G.; Variale V.; Dillmann I.; Domingo Pardo C.; Heil M.; Duran I.; Paradela C.; Tarrio D.; Ganesan S.; Giubrone G.; L. Tain J.; Gramegna F.; F. Mastinu P.; Harrisopulos S.; Ioannides K.; Karadimos D.; Jericha E.; Leeb H.; Weiss C.; Kappeler F.; Lederer C.; Pavlik A.; Wallner A.; Lozano M.; Praena J.; M. Quesada J.; MASSIMI, CRISTIAN; VANNINI, GIANNI; Mengoni A.; Ventura A.; Mosconi M.; Nolte R.; Vlastou R.;doi: 10.3938/jkps.59.1624
handle: 11585/140000 , 1885/78826 , 2117/27869
After a halt of four years, the n TOF spallation neutron facility at CERN has resumed operation in November 2008 with a new spallation target characterized by an improved safety and engineering design, resulting in a more robust overall performance and e cient cooling. The rst measurement during the 2009 run has aimed at the full characterization of the neutron beam. Several detectors, such as calibrated ssion chambers, the n TOF Silicon Monitor, a Mi- croMegas detector with 10B and 235U samples, as well as liquid and solid scintillators have been used in order to characterize the properties of the neutron uence. The spatial pro le of the beam has been studied with a specially designed \X-Y
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 Powered bymore_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/78826Data sources: Bielefeld Academic Search Engine (BASE)Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/27869Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2011License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverUPCommons. Portal del coneixement obert de la UPCArticle . 2011License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCUniversitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2011License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3938/jkps.59.1624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 GermanyPublisher:Elsevier BV Authors: Michael Löffler; Michael Steffen; Michael Steffen; Karlheinz Schaber;Abstract A Triangle Cycle with a piston engine expansion unit is used to convert low temperature heat into electrical energy. In this process, the isentropic efficiency of the expansion unit is considered to be unknown, and a theoretical approach for the calculation of isentropic efficiency is presented. A number of influences are taken into account – dead volume, residual mass, liquid injection performance and wall heat transfer. Various working fluids are investigated in a wide range of temperatures (333K–573K), engine speeds (5 Hz–30 Hz) and stroke volumes (0.1 L–50 L). The isentropic efficiency of water as working fluid is in the range of 0.75–0.88 and drops significantly for high stroke volumes and engine speeds. In general, injection mass has the most impact on isentropic efficiency because it influences dead volume and injection performance. The injection mass increases with vapor density and therefore is significantly influenced by working fluid and temperatures. The Triangle Cycle is compared with Organic Rankine Cycles by using determined isentropic efficiency. The exergetic efficiency of the Triangle Cycle using water is up to 35–70% higher than that of supercritical Organic Rankine Cycles in situations with a heat source temperature of up to 450K.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2012.11.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 21 Jan 2021 Italy, United Kingdom, Spain, Denmark, United Kingdom, Netherlands, Netherlands, Germany, Germany, United Kingdom, Spain, Switzerland, GermanyPublisher:Springer Science and Business Media LLC Funded by:EC | HYPERION, EC | ESPResSo, EC | APOLO +3 projectsEC| HYPERION ,EC| ESPResSo ,EC| APOLO ,RSF| Development of the technology of highly efficient and stable perovskite solar cells using steel substrates ,EC| GrapheneCore2 ,UKRI| SPECIFIC IKC Phase 2Nam-Gyu Park; Joseph J. Berry; Muriel Matheron; Jeff Kettle; Yulia Galagan; Francesca De Rossi; Francesca De Rossi; Harald Hoppe; Yueh-Lin Loo; Trystan Watson; Ramazan Yildirim; Sjoerd Veenstra; Vladimir Bulovic; Konrad Domanski; Shengzhong Frank Liu; Shengzhong Frank Liu; Anna Osherov; Mark V. Khenkin; Mark V. Khenkin; Ulrich S. Schubert; Michael D. McGehee; Michael D. McGehee; Diego Di Girolamo; Diego Di Girolamo; Aron Walsh; Aron Walsh; Francesca Brunetti; Marina S. Leite; Marina S. Leite; Giorgio Bardizza; Mohammad Khaja Nazeeruddin; Antonio Abate; Shaik M. Zakeeruddin; Eugene A. Katz; Michał Dusza; Chang-Qi Ma; Iris Visoly-Fisher; Michael Saliba; Michael Saliba; Hans Köbler; Aldo Di Carlo; Stéphane Cros; Anders Hagfeldt; Matthieu Manceau; Michael Grätzel; çaǧla Odabaşı; Elizabeth von Hauff; Rongrong Cheacharoen; Quinn Burlingame; Vida Turkovic; Ana Flávia Nogueira; Rico Meitzner; Yi-Bing Cheng; Haibing Xie; Monica Lira-Cantu; Morten Madsen; Kai Zhu; Alexander Colsmann; Stephen R. Forrest; Joseph M. Luther; Samuel D. Stranks; Christoph J. Brabec; Christoph J. Brabec; Henry J. Snaith; Wolfgang Tress; Pavel A. Troshin; Christopher J. Fell; Matthew O. Reese;AbstractImproving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,149 popularity Top 0.01% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 383visibility views 383 download downloads 101 Powered bymore_vert CORE arrow_drop_down Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/233255Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/84277Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019License: CC BYData sources: Spiral - Imperial College Digital RepositoryDiposit Digital de Documents de la UABArticle . 2020License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Southern Denmark Research OutputArticle . 2020Data sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020License: CC BYData sources: University of Southern Denmark Research OutputNature EnergyArticle . 2020add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41560-019-0529-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Ghosh, D. S.; Chen, T. L.; Formica, N.; Hwang, J.; Bruder, I.; Pruneri, V.;Abstract We propose a novel transparent electrode consisting of silver (Ag)–aluminum doped zinc oxide (AZO)–nickel (Ni) deposited at room temperature on glass and polyethylene terephthalate (PET) for flexible organic photovoltaics. The electrode combines the high electrical conductivity and mechanical ductility of Ag, the transparency and antireflection of AZO and the high work function and stability of Ni. Environmental stability results confirmed that the electrode maintains its optical and electrical properties at both elevated temperature (500 °C) and under damp heat conditions (85 °C and 85% relative humidity). To demonstrate its functional potential, the electrode has been used as the transparent anode in an organic solar cell (OSC), which shows an efficiency of 2.6%, very close to the value (2.9%) obtained in a similar cell using the widely used indium tin oxide (ITO). With respect to ITO, the proposed transparent electrode has several advantages, including mechanical flexibility, room temperature processing and low cost.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEVal Snow; Lutz Merbold; Lutz Merbold; Robert M. Rees; Paul C. D. Newton; Katja Klumpp; Nina Buchmann; Raphaël Martin; Pete Smith; Kathrin Fuchs; Daniel Bretscher; Nuala Fitton; Lorenzo Brilli; Lorenzo Brilli; Cairistiona F.E. Topp; Mark Lieffering; Susanne Rolinski;handle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, United Kingdom, Germany, GermanyPublisher:Elsevier BV Funded by:EC | TRIPOD, EC | reFUELEC| TRIPOD ,EC| reFUELJohannes Schmidt; Andrea N. Hahmann; Stefan Pfenninger; Sebastian Wehrle; Russell McKenna; Russell McKenna; Iain Staffell; Heidi Heinrichs; Detlef Stolten; Tim Tröndle; Martin Robinius; Stefan Höltinger; Johan Lilliestam; Jann Michael Weinand; David Severin Ryberg;handle: 2164/16924
Abstract A recent article in this journal claimed to assess the socio-technical potential for onshore wind energy in Europe. We find the article to be severely flawed and raise concerns in five general areas. Firstly, the term socio-technical is not precisely defined, and is used by the authors to refer to a potential that others term as merely technical. Secondly, the study fails to account for over a decade of research in wind energy resource assessments. Thirdly, there are multiple issues with the use of input data and, because the study is opaque about many details, the effect of these errors cannot be reproduced. Fourthly, the method assumes a very high wind turbine capacity density of 10.73 MW/km2 across 40% of the land area in Europe with a generic 30% capacity factor. Fifthly, the authors find an implausibly high onshore wind potential, with 120% more capacity and 70% more generation than the highest results given elsewhere in the literature. Overall, we conclude that new research at higher spatial resolutions can make a valuable contribution to wind resource potential assessments. However, due to the missing literature review, the lack of transparency and the overly simplistic methodology, Enevoldsen et al. (2019) potentially mislead fellow scientists, policy makers and the general public.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/2164/16924Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/2164/16924Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2020.111693&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Research , Report , Preprint , Journal 2020Embargo end date: 10 May 2020 United Kingdom, Spain, Italy, Croatia, United States, Italy, France, United Kingdom, Italy, Croatia, Italy, Croatia, Belgium, France, Turkey, Italy, Croatia, Germany, Italy, France, Italy, Germany, Belgium, Italy, Germany, Germany, Italy, Italy, United Kingdom, Belarus, Belarus, Belgium, Spain, Italy, France, United States, Switzerland, Italy, ItalyPublisher:Elsevier BV Funded by:DFG, EC | LHCTOPVLQ, EC | AMVA4NewPhysics +2 projectsDFG ,EC| LHCTOPVLQ ,EC| AMVA4NewPhysics ,EC| INSIGHTS ,GSRIAntonin Kveton; Marco Toliman Lucchini; Andromachi Tsirou; Luca Cadamuro; Jaana Kristiina Heikkilä; Dave M Newbold; David Saltzberg; Cécile Caillol; N. De Filippis; Petra Merkel; Jan Tomsa; M. Della Negra; David Jonathan Hofman; Stephen Sanders; Pushpalatha C Bhat; Daniel Gonzalez; Christopher West; Sandeep Bhowmik; Victor Golovtcov; G. B. Mohanty; E. Gurpinar Guler; Vyacheslav Klyukhin; Markus Seidel; Damir Devetak; Stephan Lammel; J. S. Lange; Paolo Ronchese; Paolo Ronchese; W. T. Hung; Stepan Obraztsov; Tommaso Dorigo; Dario Bisello; Dario Bisello; Raffaella Radogna; Milan Stojanovic; Quentin Python; Emanuela Barberis; J. R. González Fernández; Pedro Silva; Pedro G Mercadante; Grace Cummings; Marc Dejardin; Marta Verweij; P. Busson; Pascal Paganini; Willem Verbeke; Fabio Monti; Fabio Monti; Daniel Abercrombie; George Stephans; F. L. Fabbri; C. Baldenegro Barrera; P. E. Karchin; Matteo Cremonesi; James Wetzel; Jordan Martins; Marguerite Tonjes; D. Di Croce; L. J. Gutay; Jehad Mousa; Colin Bernet; W. Van Doninck; Kaya Tatar; Michael Dittmar; J. M. Grados Luyando; Hualin Mei; Marc Dobson; Maral Alyari; Paul Baillon; Nicholas Menendez; Yiwen Wen; Radek Zlebcik; A. Baden; Pietro Vischia; Mingshui Chen; Tilman Rohe; Haiyan Wang; Santiago Folgueras; P. Martinez Ruiz del Arbol; E. M. Da Costa; Altan Cakir; V. Monaco; K. H. M. Kwok; Christopher Hill; Gigi Rolandi; Basil Schneider; Alexander Ershov; Daniel Rosenzweig; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Prashant Shukla; Alicia Calderon; Candan Dozen; Marc Osherson; Eija Tuominen; Himal Acharya; Klaas Padeken; Davide Piccolo; Hugo Delannoy; Igor Lokhtin; Nadir Daci; Christophe Royon; Mauricio Thiel; W. De Boer; Cédric Prieels; A. Da Rold; C. A. Salazar González; Johannes Brandstetter; R. Loveless; Aleksandra Lelek; Frank Würthwein; Cristina Tuve; Inkyu Park; Didar Dobur; Elena Voevodina; Ivan Marchesini; Mariana Shopova; Y. Musienko; Bibhuprasad Mahakud; Jorma Tuominiemi; J. Duarte Campderros; Sumit Keshri; Ekaterina Kuznetsova; Pierluigi Zotto; Pierluigi Zotto; Salim Cerci; Fabrizio Palla; Zhen Hu; Daniel Winterbottom; Dinko Ferencek; Charles Maguire; Zoltan Gecse; Y. C. Yang; Graham Wilson; Andreas Albert; Ivan Mikulec; A. A. Bin Anuar; J. C. Freeman; Francesco Fiori; Frans Meijers; Patricia McBride; Raman Khurana; Joosep Pata; M. Bluj; D. Kim; Andreas Werner Jung; Gabriel Madigan; Attilio Santocchia; Yu. Andreev; Kristian Allan Hahn; M. Flechl; Rui Xiao; Igor Smirnov; Georg Steinbrück; Warren Clarida; Nathaniel Odell; G. Bagliesi; Silvano Tosi; Nicholas Smith; Tobias Pook; Thorsten Chwalek; Alexis Kalogeropoulos; Sourabh Dube; Ennio Monteil; Matthias Wolf; Caroline Collard; Dooyeon Gyun; I. Gonzalez Caballero; Aleko Khukhunaishvili; Yen-Jie Lee; Andrea Malara; Jane Nachtman; Magda Diamantopoulou; Janos Erö; Konstanty Sumorok; J. Suarez Gonzalez; Alessandra Fanfani; M. R. Adams; Z. Liu; Süleyman Durgut; Marek Walczak; Paolo Dini; Rainer Wallny; Michael Mulhearn; Charles C. Richardson; Igor Golutvin; Mircho Rodozov; Oleksii Toldaiev; Andreas Mussgiller; Marc Dünser; Maximilian Heindl; W. Ji; Sergei Gleyzer; Mayda Velasco; Gabriella Pasztor; Renato Potenza; A. Vorobyev; Stephen Robert Wagner;doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
doi: 10.1016/j.physletb.2020.135409 , 10.3929/ethz-b-000409328 , 10.18154/rwth-2021-02348 , 10.5445/ir/1000118244 , 10.3204/pubdb-2020-01701 , 10.18154/rwth-2021-02305
handle: 11588/837510 , 11368/2961997 , 10281/275031 , 10486/704072 , 10679/9293 , 10067/1761620151162165141 , 10651/56803 , 11573/1718429 , 11568/1106026 , 20.500.14017/fe08831c-0b32-4e29-ab88-747a08733b3e , 11384/83156 , 11585/803078 , 20.500.11769/413392 , 2158/1210977 , 2318/1766345 , 10044/1/87584 , 11571/1486563
A study of the production of prompt J/ψ mesons contained in jets in proton-proton collisions at s=8TeV is presented. The analysis is based on data corresponding to an integrated luminosity of 19.1 fb−1 collected with the CMS detector at the LHC. For events with at least one observed jet, the angular separation between the J/ψ meson and the jet is used to test whether the J/ψ meson is part of the jet. The analysis shows that most prompt J/ψ mesons having energy above 15 GeV and rapidity |y|<1 are contained in jets with pseudorapidity |ηjet|<1. The differential distributions of the probability to have a J/ψ meson contained in a jet as a function of jet energy for a fixed J/ψ energy fraction are compared to a theoretical model using the fragmenting jet function approach. The data agree best with fragmenting jet function calculations that use a long-distance matrix element parameter set in which prompt J/ψ mesons are predicted to be unpolarized. This technique demonstrates a new way to test predictions for prompt J/ψ production using nonrelativistic quantum chromodynamics. Physics Letters B, 804 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Full-text Institutio... arrow_drop_down Archivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di PisaArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di PisaKITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2020Full-Text: https://arxiv.org/abs/1910.01686Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/87584Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288135Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8k1587qnData sources: Bielefeld Academic Search Engine (BASE)Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryInstitutional Repository Universiteit AntwerpenArticle . 2020Data sources: Institutional Repository Universiteit AntwerpenRepositorio Institucional de la Universidad de OviedoArticle . 2020License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoVrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research PortalPublikationsserver der RWTH Aachen UniversityPreprint . 2019Data sources: Publikationsserver der RWTH Aachen UniversityPublikationsserver der RWTH Aachen UniversityArticle . 2020Data sources: Publikationsserver der RWTH Aachen UniversityArchivio Istituzionale Università di BergamoArticle . 2020Data sources: Archivio Istituzionale Università di BergamoFlore (Florence Research Repository)Article . 2020Data sources: Flore (Florence Research Repository)IRIS - Università degli Studi di CataniaArticle . 2020Data sources: IRIS - Università degli Studi di CataniaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2020.135409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 GermanyPublisher:Elsevier BV Authors: Julian Rominger; Csaba Farkas;Abstract Electric vehicles (EV) are treated as a breakthrough technology in the automotive market. The novelty of this technology also implicates that the incidence of these vehicles worldwide is still low. An important issue regarding EVs is the existence of proper charging infrastructure as waiting at charging stations due to an inadequate number of chargers can discourage EV owners. However, as the number of EVs and charging stations are low at present, real world experience is not available, so computer simulations are required for the planning of such charging stations. We developed a stochastic model in this paper that includes driving and charging behaviour of EV owners in Japan. The model is based on Monte Carlo methods and was implemented in MATLAB. We conducted simulations with this model to find out whether the existing infrastructure is adequate for the charging of a large number of EVs. The results indicate that Japan is well prepared for an increase in plug-in vehicles (PHEVs) in the near future: currently the country has 6 fast chargers for 100 electric cars and for this ratio - on average -, waiting probability at DC (direct current) fast chargers ranges lower than 5%, which is an acceptable value for EV owners. If, however, the ratio decreases, waiting probability increases exponentially.
International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2017.01.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Electrical Power & Energy SystemsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2017.01.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 Netherlands, GermanyPublisher:Wiley Funded by:EC | EARLYWARNING, EC | BACCHUSEC| EARLYWARNING ,EC| BACCHUSEgbert H. van Nes; Marten Scheffer; Milena Holmgren; Chi Xu; Chi Xu; Arie Staal; Stijn Hantson;doi: 10.1002/ecy.1470
pmid: 27859090
AbstractAlthough canopy height has long been a focus of interest in ecology, it has remained difficult to study at large spatial scales. Recently, satellite‐borne LiDAR equipment produced the first systematic high resolution maps of vegetation height worldwide. Here we show that this new resource reveals three marked modes in tropical canopy height ~40, ~12, and ~2 m corresponding to forest, savanna, and treeless landscapes. The distribution of these modes is consistent with the often hypothesized forest‐savanna bistability and suggests that both states can be stable in areas with a mean annual precipitation between ~1,500 and ~2,000 mm. Although the canopy height states correspond largely to the much discussed tree cover states, there are differences, too. For instance, there are places with savanna‐like sparse tree cover that have a forest‐like high canopy, suggesting that rather than true savanna, those are thinned relicts of forest. This illustrates how complementary sets of remotely sensed indicators may provide increasingly sophisticated ways to study ecological phenomena at a global scale.
Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1002/ecy....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ecy.1470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 15 Jan 2020 Denmark, Switzerland, GermanyPublisher:Elsevier BV Authors: Martin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; +5 AuthorsMartin Röck; Marcella Ruschi Mendes Saade; Maria Balouktsi; Freja Nygaard Rasmussen; Harpa Birgisdottir; Rolf Frischknecht; Guillaume Habert; Thomas Lützkendorf; Alexander Passer;Applied Energy, 258 ISSN:0306-2619 ISSN:1872-9118
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 644 citations 644 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.114107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu