Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
170 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Open Source
  • Embargo
  • CN
  • US
  • SE
  • MY
  • PH

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jeffrey D Wood; Matteo Detto; orcid Marvin Browne;
    Marvin Browne
    ORCID
    Harvested from ORCID Public Data File

    Marvin Browne in OpenAIRE
    Nathan J B Kraft; +9 Authors

    Synopsis Classic debates in community ecology focused on the complexities of considering an ecosystem as a super-organ or organism. New consideration of such perspectives could clarify mechanisms underlying the dynamics of forest carbon dioxide (CO2) uptake and water vapor loss, important for predicting and managing the future of Earth’s ecosystems and climate system. Here, we provide a rubric for considering ecosystem traits as aggregated, systemic, or emergent, i.e., representing the ecosystem as an aggregate of its individuals or as a metaphorical or literal super-organ or organism. We review recent approaches to scaling-up plant water relations (hydraulics) concepts developed for organs and organisms to enable and interpret measurements at ecosystem-level. We focus on three community-scale versions of water relations traits that have potential to provide mechanistic insight into climate change responses of forest CO2 and H2O gas exchange and productivity: leaf water potential (Ψcanopy), pressure volume curves (eco-PV), and hydraulic conductance (Keco). These analyses can reveal additional ecosystem-scale parameters analogous to those typically quantified for leaves or plants (e.g., wilting point and hydraulic vulnerability) that may act as thresholds in forest responses to drought, including growth cessation, mortality, and flammability. We unite these concepts in a novel framework to predict Ψcanopy and its approaching of critical thresholds during drought, using measurements of Keco and eco-PV curves. We thus delineate how the extension of water relations concepts from organ- and organism-scales can reveal the hydraulic constraints on the interaction of vegetation and climate and provide new mechanistic understanding and prediction of forest water use and productivity.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Integrative and Comparative Biology
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Integrative and Comp...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Integrative and Comparative Biology
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hu, Jiaxiang; Hu, Weihao; Cao, Di; Huang, Yuehui; +4 Authors

    This paper proposes a technique for the probabilistic wind power forecasting (WPF) of a newly built wind farm (NWF) using a limited amount of historical data. First, the state-of-the-art Transformer network is employed to capture the power generation pattern of different wind farms (WFs) based on abundant historical training samples. Then, the Bayesian averaging regression method is applied to transfer the learned power generation pattern to the NWF by assigning proper weights to the WPF results of different WFs. This enables the proposed method to yield accurate NWF power predictions utilizing a limited amount of historical data. The Bayesian characteristics further enable the quantification of multiple uncertainties in forecasting results that may be essential for the NWF operator when the input is uncertain. Comprehensive tests were also performed by employing other deterministic and probabilistic WPF methods using field data. By comparing the results, the proposed method is demonstrated to produce accurate forecasting results with sparse historical data. Moreover, the uncertainties of outcomes are quantified, and acceptable performance is achieved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Like Zhong;
    Like Zhong
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Like Zhong in OpenAIRE
    orcid Xiaoti Cui;
    Xiaoti Cui
    ORCID
    Harvested from ORCID Public Data File

    Xiaoti Cui in OpenAIRE
    orcid Erren Yao;
    Erren Yao
    ORCID
    Harvested from ORCID Public Data File

    Erren Yao in OpenAIRE
    Guang Xi; +2 Authors

    Power-to-methane (PtM) is a prospective solution to the mismatching between the supply and consumption of renewable energy resources (RES) by converting renewable power into methane. However, the continuous fluctuation of RES causes the PtM system to deviate from the design condition in the vast majority of cases, and thus it is significantly vital to study the operating characteristics of the PtM system under off-design conditions. This paper proposes a comprehensive investigation framework from design to off-design steps for the performance improvement of a PtM system combining solid oxide electrolysis cell with methanation reactor, and solar energy is selected as renewable energy input. Firstly, the system with the total exergy efficiency (ηEX,tot) of 11.83% and levelized cost of exergy (LCOE) of 150.76 $/MWh is selected as the optimal design condition based on the homogeneous assessment from both thermodynamic and economic aspects, by means of Non-dominated sorting genetic algorithm-II. Then, based on the optimal design point, the off-design performances are quantitatively investigated under varying solar radiation and key operating parameters, in terms of synthetic natural gas (SNG) yield and ηEX,tot. The results indicate that with the increment in solar radiation, the SNG yield rises, while the ηEX,tot increases first and then decreases. Finally, the multi-objective optimization based on the Artificial Neural Network models is implemented for the system under off-design conditions to acquire the best trade-off between hourly SNG yield and ηEX,tot. The off-design optimization solutions reveal that the hourly optimal SNG yield is located in the range of 275.06–946.53 kW, achieving a total annual SNG yield of 1697 MWh/y, and the hourly optimal ηEX,tot mainly varies in the range of 10.40–11.40%.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2024
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2024
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Patrick Rousset;
    Patrick Rousset
    ORCID
    Harvested from ORCID Public Data File

    Patrick Rousset in OpenAIRE
    Mark Daniel G. de Luna; orcid Arjay A. Arpia;
    Arjay A. Arpia
    ORCID
    Harvested from ORCID Public Data File

    Arjay A. Arpia in OpenAIRE
    Arjay A. Arpia; +5 Authors

    Abstract With drastic fossil fuel depletion and environmental deterioration concerns, a move towards a more sustainable bioenergy-based economy is essential. Lately, the application of microwave (MW) irradiation for waste processing has been attracting interest globally. MW-assisted heating possesses several advantages such as the provision of high microwave energy into dielectric materials with deeper penetration for internal heat generation, showing beneficial features in improving the heating rate and reducing the reaction time. Consequently, the most recent literature regarding the applications of MW-assisted heating for biomass pretreatment as well as biofuel and bioenergy production was reviewed and consolidated in this study. An impressive increase in the product yield and improvement of the product properties are reported, with the use of MW-assisted heating in several conversion routes to produce biofuels. Despite being a promising technology for biofuel production, some major fundamental data of MW-assisted heating have not been comprehensively identified. Therefore, the feasibility of this technology for large-scale implementation is still subpar. Understanding the interaction between the feedstock and the microwave electromagnetic field, and the optimization of several operational and mechanical parameters are the two main keystones that would propel the industrialization of MW heating in the near future. This provides key insights leading to increased feasibility and more advanced application of MW heating.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Article . 2021
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemical Engineering Journal
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Article . 2021
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemical Engineering Journal
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yao Zhang; Yuxin Zhang; Chao Gong; orcid Hasan Dinçer;
    Hasan Dinçer
    ORCID
    Harvested from ORCID Public Data File

    Hasan Dinçer in OpenAIRE
    +1 Authors

    This study evaluates quality function deployment-based innovation pathways for renewable energy projects. For this purpose, a 2-stage novel model is suggested. Firstly, the weights of the factors are calculated by considering Pythagorean fuzzy decision-making trial and evaluation laboratory methodology based on 2-tuple linguistic values. With the help of the impact-relation map, the activities, and immediate predecessors are identified. Within this context, five different paths are determined for this situation. Secondly, the duration pathways and innovation costs are calculated for renewable energy projects. The findings indicate that the activities A (customer expectations) and E (production requirement) play the most critical role because they take place in all different paths. Therefore, it is strongly recommended that renewable energy investment companies should take necessary actions to satisfy customer expectations, such as offering affordable products and providing necessary information for the use of these projects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ceylan, Oğuzhan; Taşkın, Gülsen; Paudyal, Sumit;

    Due to increasing volume of measurements in smart grids, surrogate based learning approaches for modeling the power grids are becoming popular. This paper uses regression based models to find the unknown state variables on power systems. Generally, to determine these states, nonlinear systems of power flow equations are solved iteratively. This study considers that the power flow problem can be modeled as an data driven type of a model. Then, the state variables, i.e., voltage magnitudes and phase angles are obtained using machine learning based approaches, namely, Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), and Support Vector Regression (SVR). Several simulations are performed on the IEEE 14 and 30-Bus test systems to validate surrogate based learning based models. Moreover, input data was modified with noise to simulate measurement errors. Numerical results showed that all three models can find state variables reasonably well even with measurement noise.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Kadir Has University...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/pesgm4...
    Conference object . 2020 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Kadir Has University...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/pesgm4...
      Conference object . 2020 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wenlong Zhang; orcid Huanxin Li;
    Huanxin Li
    ORCID
    Harvested from ORCID Public Data File

    Huanxin Li in OpenAIRE
    orcid bw Xiaohui Ning;
    Xiaohui Ning
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Xiaohui Ning in OpenAIRE

    The Fe/FeCl2-Graphite molten salt battery is a promising technology for large-scale energy storage, offering a long lifespan, a low operating temperature (<200 °C), and cost efficiency. However, its practical applications are hindered by the lack of a scalable preparation approach and insufficient redox stability in the Fe/FeCl2 electrode. Our study introduces an electrochemical anodic electrolysis (EAE) strategy, employing the anodic process (Fe → Fe2+) in an Al|AlCl3/NaCl/LiCl|Fe electrolysis system for the Fe/Fe2+ negative electrode in the Fe/FeCl2-Graphite battery. The EAE strategy forms an oxidized film, preventing incipient dissolution in the electrolyte and addressing redox stability issues with FeCl2 as the active substance. The Fe/Fe2+ negative electrode prepared by the EAE strategy exhibits a stabilized capacity of 0.72 mAh/cm2 after 7000 cycles at 5 mA/cm2, with a lower polarization level (∼29 mV) compared to FeCl2 as the active component. The flexibility of the EAE strategy is validated in both galvanostatic and potentiostatic processes, with a discharge capacity of 14 mAh after 1000 cycles, a capacity retention rate of 85%, and a Coulombic efficiency of 98% in the potentiostatic anodic electrolysis Fe/Fe2+ electrode. The scalability and reliability of the EAE strategy are further demonstrated in capacity-expanded Fe/FeCl2-Graphite batteries, reaching a discharge capacity of 155.1 mAh after 1000 cycles at 130 mA, with a capacity retention rate of 94%. For the first time, we showcased an EAE approach capable of producing Fe/Fe2+ electrodes at a rate of about 68.6 m2 per day. Additionally, we successfully assembled an Fe/FeCl2-Graphite battery at about a 0.42 ampere-hour level, paving the way for the scalable application of Fe/FeCl2-Graphite batteries.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UCL Discoveryarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    UCL Discovery
    Article . 2024
    Data sources: UCL Discovery
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ACS Applied Materials & Interfaces
    Article . 2024 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UCL Discoveryarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      UCL Discovery
      Article . 2024
      Data sources: UCL Discovery
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ACS Applied Materials & Interfaces
      Article . 2024 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Mustafa Çağlar;
    Mustafa Çağlar
    ORCID
    Harvested from ORCID Public Data File

    Mustafa Çağlar in OpenAIRE
    Hande Kayacık; orcid Yaşar Karabul;
    Yaşar Karabul
    ORCID
    Harvested from ORCID Public Data File

    Yaşar Karabul in OpenAIRE
    orcid Mehmet Kılıç;
    Mehmet Kılıç
    ORCID
    Harvested from ORCID Public Data File

    Mehmet Kılıç in OpenAIRE
    +2 Authors

    Abstract The role of BaO in the glassy structured Na2Si3O7 was investigated in the context of gamma radiations shielding parameters in the study. The mass attenuation coefficient, half layer value, and mean free path of the Na2Si3O7/BaO composites were calculated experimentally for the photons with the energies of 81 keV and 356 kev emitted from 133Ba point radioactive source. The same parameters were also calculated by Monte Carlo N-particle simulation (MCNP5) for the gamma photons which are emitted from 133Ba, 241Am, 99mTc, 177Lu, 192Ir, and 137Cs radioactive sources. The effective atomic number and effective electron density were determined by WinXCom software. Additionally, the scattered gamma photon intensity of the composites was realized for the energy of 364 keV and compared with the most utilized radiation shielding material lead. It was concluded that the composite having the highest BaO additive exhibits the best gamma photon absorption ability at all energies investigated.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Nuclear Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Nuclear Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Marta Peláez;
    Marta Peláez
    ORCID
    Harvested from ORCID Public Data File

    Marta Peláez in OpenAIRE
    Aida López-Sánchez; Geraldo Wilson Fernandes; Rodolfo Dirzo; +2 Authors

    Abstract Background and Aims Anthropogenic disturbances are causing a co-occurring increase in biotic (ungulate herbivory) and abiotic (drought) stressors, threatening plant reproduction in oak-dominated ecosystems. However, could herbivory compensate for the adverse impact of drought by reducing evapotranspiration? Thus, we investigated the isolated and joint effects of herbivory and drought on oak seedlings of two contrasting Mediterranean species that differ in leaf habit and drought resistance. Methods California oak seedlings from the evergreen, and more drought-resistant, Quercus agrifolia and the deciduous Q. lobata (n = 387) were assigned to a fully crossed factorial design with herbivory and drought as stress factors. Seedlings were assigned in a glasshouse to three to four clipping levels simulating herbivory and three to four watering levels, depending on the species. We measured survival, growth and leaf attributes (chlorophyll, secondary metabolites, leaf area and weight) once a month (May–September) and harvested above- and below-ground biomass at the end of the growing season. Key Results For both oak species, simulated herbivory enhanced seedling survival during severe drought or delayed its adverse effects, probably due to reduced transpiration resulting from herbivory-induced leaf area reduction and compensatory root growth. Seedlings from the deciduous, and less drought-resistant species benefited from herbivory at lower levels of water stress, suggesting different response across species. We also found complex interactions between herbivory and drought on their impact on leaf attributes. In contrast to chlorophyll content which was not affected by herbivory, anthocyanins increased with herbivory – although water stress reduced differences in anthocyanins due to herbivory. Conclusions Herbivory seems to allow Mediterranean oak seedlings to withstand summer drought, potentially alleviating a key bottleneck in the oak recruitment process. Our study highlights the need to consider ontogenetic stages and species-specific traits in understanding complex relationships between herbivory and drought stressors for the persistence and restoration of multi-species oak savannas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivo Digital UPMarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Archivo Digital UPM
    Article . 2025
    License: CC BY NC ND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annals of Botany
    Article . 2024 . Peer-reviewed
    License: OUP Standard Publication Reuse
    Data sources: Crossref
    Annals of Botany
    Article . 2025
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivo Digital UPMarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Archivo Digital UPM
      Article . 2025
      License: CC BY NC ND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Annals of Botany
      Article . 2024 . Peer-reviewed
      License: OUP Standard Publication Reuse
      Data sources: Crossref
      Annals of Botany
      Article . 2025
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Cuartas, J;
    Cuartas, J
    ORCID
    Harvested from ORCID Public Data File

    Cuartas, J in OpenAIRE
    Bhatia, A; Carter, D; Cluver, L; +9 Authors

    The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Child Abuse & Neglect
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Oxford University Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Child Abuse & Neglect
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph