- home
- Advanced Search
- Energy Research
- IN
- GB
- AU
- Solar Energy
- Energy Research
- IN
- GB
- AU
- Solar Energy
description Publicationkeyboard_double_arrow_right Article , Journal 1976Publisher:Elsevier BV Authors: M.G. Davies;Abstract St. George's School, Wallasey, latitude 53°25′N, is heated by solar radiation and heat from the lighting and the occupants; no conventional heating is used. General reasoning suggests that it should be advantageous to use solar heat in this locality in winter. Constructional features associated with the solar design are discussed. The results of an observational study suggest that temperatures of 16°C and above can be achieved in winter; daily mean air temperatures of up to 24.5°C are found in summer, with higher peak values. Serious overheating has occurred but is rare. The heating costs appear to be low compared with some other secondary schools. User study findings are reported. While shortcomings in the Wallasey realisation are noted, it is concluded that the principle of using solar gain to heat buildings is practicable and economic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0038-092x(76)90064-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0038-092x(76)90064-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:CSIRO Publishing Authors: S. O'Shea; B.A. Pailthorpe; Richard Edward Collins;A recent innovation in evacuated tubular solar collector technology is described. A desorbable gas, which specifically adsorbs on the graphitic solar selective surface, can reversibly degrade the vacuum by providing a heat conduction path at elevated temperatures. The stagnation temperature of the system is thus limited in a controllable manner without significantly degrading the low temperature performance. A simple theory incorporating the Langmuir adsorption isotherm and the Knudsen free molecule transport regime is used to describe the phenomenon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/ph870643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1071/ph870643&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:S. Moorthy Babu;
S. Moorthy Babu
S. Moorthy Babu in OpenAIRES. Ananthakumar;
Jayshree Ramkumar;S. Ananthakumar
S. Ananthakumar in OpenAIREAbstract Luminescent CdTe nanoparticles were synthesized in aqueous medium at low temperature under the inert atmosphere using water soluble precursors. Potassium tellurite was employed as the tellurium source for the synthesis. As synthesized CdTe nanoparticles were phase transferred into organic medium via partial ligand exchange method through long chain organic ligand 1-dodecanethiol in the presence of acetone. The phase transferred CdTe nanoparticles were blended homogeneously with P3HT polymer in a common solvent (chloroform) for possible application as the active layer in hybrid solar cell structure. The prepared blends were characterised with UV–Vis, Photoluminescence, SEM and AFM analysis. The XRD patterns of the particles in two phases confirm the uniformity of the cubic structure. The size distribution of the synthesized particles was confirmed through TEM analysis. The effective interactions of the donor and acceptor components were confirmed through UV–Visible spectroscopy. The efficient charge transfer processes of the blends were confirmed through photoluminescence analysis of the nanoparticles various volume additions with polymer. The morphological analysis of the blends was carried out using the Scanning Electron Microscopy which reveals the distribution of the nanoparticles in the polymer. AFM analysis of the coated blend film explores the phase separation of the nanoparticles when blended with the polymer in chloroform. Advantages of these nanoparticles for solar cell applications were discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.01.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2014.01.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Fangyang Liu; Zhenghua Su; Ao Wang; Xiaojing Hao;Kaiwen Sun;
Kaiwen Sun;Kaiwen Sun
Kaiwen Sun in OpenAIREAbstract Kesterite Cu2ZnSnS4 (CZTS) solar cells are regarded as a promising photovoltaic technology owing to the non-toxic and earth-abundant constitutes. With the application of scalable and low-cost solution methods, the possibility of its commercialization can be further increased. This work explores preparing prominent CZTS films by an economically feasible successive ionic adsorption and reaction (SILAR) synthesis method. The obtained precursor with the Mo/ZnS/Cu2SnS3 structure requires appropriate substantial annealing under a chalcogen atmosphere to form kesterite CZTS films. The annealing process is therefore optimized to improve the film quality and the performance of solar cells. Specifically, the optimal annealing condition is determined by adjusting the annealing temperature and holding time, respectively. The CZTS film annealed at 580 °C for 60 min demonstrates better film quality in terms of surface morphology, crystallinity, and phase purity. Consequently, CZTS solar cells fabricated with the optimal absorber exhibit a preferable efficiency of up to 4.26%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.03.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Abstract Buildings often have fixed function spaces that are complimentary or incompatible with thermal comfort (18–28 °C). Synergetic relationships ameliorates energy shortage and affords comfort. Galvanized iron roof two-storey houses of North-East India were studied to develop a theory-and-strategy to optimize design process and energy conservation. Methods include affordance theory criticism, surveys, simulations, synergy analysis. Parametric strategy on passive design affordances examines human comfort and temperature on diurnal time scales: Daytime (08–17 h), Evening (17–22 h), Night (22–08 h) in various seasons. Under flexible ventilation, living-dining space (S1) shows optimum temperature ranges: 20–28 °C in autumn (M1), 17–22 °C in winter (M2), and 20–31 °C in summer (M3) due to the complementary combination of passive design elements and can function as bedroom, living-room, kitchen, and social space in most seasons. In the attic-space flexible ventilation shows peak temperatures of 42 °C (autumn) and 48 °C (summer) due to low thermal mass but high thermal conductivity envelopes, and low air-changes rate (0.5 ACR) above 28 °C. Normal ventilations with 30 ACR in autumn, and a combination of 30 ACR (night) and 0.5 ACR (day) in summer reduced maximum temperature to ≤35 °C in autumn, and ≤41 °C in summer. Attic-space (S2) shows ≤29 °C in winter daytime and ≥20 °C in summer nights due to the envelope’s high heat emissivity (0.8) and function as day space in winter and summer bedroom. Shaded veranda (S3) shows low temperature (18–28 °C) in summer evening and afternoon and can function as shaded space for light work and enjoying fresh air. Passive design connotes responsiveness of spaces to the climate, and affordance theory’s complementarity lifestyle adds novelty, and it is critical to energy and space efficiency. Climate analysis affords perceptions of space and climate relationship. Parametric strategy straddles differences between space, climate, and functions to ameliorate energy needs and optimize design process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.06.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: N. Eswara Prasad; Prabhat K. Dwivedi; Shailendra Kumar Dwivedi; Santosh K. Tripathi; +3 AuthorsN. Eswara Prasad; Prabhat K. Dwivedi; Shailendra Kumar Dwivedi; Santosh K. Tripathi; D. C. Tiwari; Tarun Chandel; Pukhrambam Dipak;Abstract Thin film solar cells with ITO/ZnO/P3HT:PCM:CTSe NCs/Ag structure were fabricated employing a fast and cost-effective procedure using blended solution of P3HT:PCBM:CTSe NCs deposited by spin casting, followed by thermal annealing steps. The CTSe NCs are prepared via solvothermal method. An inverted architecture of device with structure ITO/ZnO/P3HT: PCBM:CTSe NCs/Ag have been fabricated with different concentration of CTSe NCs in poly(3-hexyle thiophene) (P3HT): [6,6]phenyl-C61-butyric-acid-methyl-ester (PCBM) matrix. The effect of CTSe NCs on the performance of hybrid solar cell with optimized blend ratio of P3HT:PCBM and CTSe NCs has been investigated for optimum power conversion. The charge carrier extraction and recombination at the interface of donor-acceptor material were studied using Electrochemical impedance spectroscopy (EIS) under dark condition. EIS study has demonstrated that the charge transfer rate was higher for the device having optimized wt% of CTSe NCs (10 wt%) in P3HT:PCBM active layer. A significant improvement in the device performances was observed on incorporation of CTSe NCs. The device exhibited open circuit voltage (Voc) of 0.475 V, short circuit current density (Jsc) of 6.95 mA/cm2, fill factor (FF) of 0.41 and power conversion efficiency (PCE) of 1.35%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.05.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Elsevier BV Authors: C. Protogeropoulos; B. J. Brinkworth; R. H. Marshall;The behaviour of lead-acid batteries during dynamic operation on a long-period basis is analyzed in this paper. An algorithm which takes into account all possible battery conditions during real operation has been developed and is used for the battery state of voltage, SOV, predictions. This battery algorithm is general and therefore can be used for other types of accumulators, provided that the model parameters are known. For model validation, a typical battery was incorporated for energy storage in a stand-alone, renewable power supply system and the experimental results were compared with the algorithm predictions. The results show that very good agreement between measured and simulated battery SOVs has been achieved for monthly periods of continuous system operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0038-092x(94)90132-l&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0038-092x(94)90132-l&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Prashant S. Kulkarni;
Asit B. Samui;Prashant S. Kulkarni
Prashant S. Kulkarni in OpenAIRESwati Sundararajan;
Swati Sundararajan
Swati Sundararajan in OpenAIREAbstract With an aim to prepare phase change material (PCM) as self-sustaining film from poly(ethylene glycol) (PEG) having reduced hydrophilicity, cross-linking of PEG and hydroxy-terminated poly(dimethyl siloxane) (HTPDMS) was done by using tetraethyl orthosilicate (TEOS) as a cross-linking agent. Following the confirmation of the crosslinked polymer using FTIR and 13C-solid state NMR, the crystallization properties were studied using X-ray diffraction and polarized optical microscopy. DSC analysis indicated an increase in enthalpy with increasing concentration of PEG. The enthalpy of fusion and crystallization was observed to reach a maximum of 125 and 104 J g−1 respectively. Contact angle of 89.5° has been achieved for polymer with highest concentration of HTPDMS. The material with lowest PEG concentration was film forming in nature. This material can be extensively used as a thermal energy storage material particularly, in smart packaging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.01.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.01.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, France, Australia, Germany, Australia, United States, SingaporePublisher:Elsevier BV Authors:Dazhi Yang;
Dazhi Yang
Dazhi Yang in OpenAIREStefano Alessandrini;
Stefano Alessandrini
Stefano Alessandrini in OpenAIREJavier Antonanzas;
Javier Antonanzas
Javier Antonanzas in OpenAIREFernando Antonanzas-Torres;
+29 AuthorsFernando Antonanzas-Torres
Fernando Antonanzas-Torres in OpenAIREDazhi Yang;
Dazhi Yang
Dazhi Yang in OpenAIREStefano Alessandrini;
Stefano Alessandrini
Stefano Alessandrini in OpenAIREJavier Antonanzas;
Javier Antonanzas
Javier Antonanzas in OpenAIREFernando Antonanzas-Torres;
Fernando Antonanzas-Torres
Fernando Antonanzas-Torres in OpenAIREViorel Badescu;
Hans Georg Beyer;Viorel Badescu
Viorel Badescu in OpenAIRERobert Blaga;
Robert Blaga
Robert Blaga in OpenAIREJohn Boland;
Jamie M. Bright; Carlos F.M. Coimbra;John Boland
John Boland in OpenAIREMathieu David;
Mathieu David
Mathieu David in OpenAIREÂzeddine Frimane;
Christian A. Gueymard;Âzeddine Frimane
Âzeddine Frimane in OpenAIRETao Hong;
Merlinde J. Kay;Tao Hong
Tao Hong in OpenAIRESven Killinger;
Sven Killinger
Sven Killinger in OpenAIREJan Kleissl;
Jan Kleissl
Jan Kleissl in OpenAIREPhilippe Lauret;
Elke Lorenz;Philippe Lauret
Philippe Lauret in OpenAIREDennis van der Meer;
Dennis van der Meer
Dennis van der Meer in OpenAIREMarius Paulescu;
Richard Perez;Marius Paulescu
Marius Paulescu in OpenAIREOscar Perpiñán-Lamigueiro;
Oscar Perpiñán-Lamigueiro
Oscar Perpiñán-Lamigueiro in OpenAIREIan Marius Peters;
Ian Marius Peters
Ian Marius Peters in OpenAIREGordon Reikard;
David Renné;Gordon Reikard
Gordon Reikard in OpenAIREYves-Marie Saint-Drenan;
Yves-Marie Saint-Drenan
Yves-Marie Saint-Drenan in OpenAIREYong Shuai;
Yong Shuai
Yong Shuai in OpenAIRERuben Urraca;
Ruben Urraca
Ruben Urraca in OpenAIREHadrien Verbois;
Frank Vignola;Hadrien Verbois
Hadrien Verbois in OpenAIRECyril Voyant;
Cyril Voyant
Cyril Voyant in OpenAIREJie Zhang;
Jie Zhang
Jie Zhang in OpenAIREThe field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing sub-domain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy-Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows-with appropriate caveats-comparison of forecasts made using different models, across different locations and time periods.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/6w14r65nData sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs RepositoryeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaMINES ParisTech: Open Archive (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 177 citations 177 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/6w14r65nData sources: Bielefeld Academic Search Engine (BASE)UniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs RepositoryeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaMINES ParisTech: Open Archive (HAL)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.04.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors:Matthew J. Emes;
Matthew J. Emes
Matthew J. Emes in OpenAIREAzadeh Jafari;
Azadeh Jafari
Azadeh Jafari in OpenAIREFarzin Ghanadi;
Farzin Ghanadi
Farzin Ghanadi in OpenAIREMaziar Arjomandi;
Maziar Arjomandi
Maziar Arjomandi in OpenAIREhandle: 2440/124992
Abstract Non-uniform pressure distributions on the heliostat surface due to turbulence in the atmospheric boundary layer (ABL) have a significant impact on the maximum bending moments about the hinge of and pedestal base of a conventional pedestal-mounted heliostat. This paper correlates the movement of the centre of pressure due to the mean and peak pressure distributions with the hinge and overturning moment coefficients using high-frequency pressure and force measurements on a scale-model heliostat within two simulated ABLs generated in a wind tunnel. The positions of the centre of pressure were calculated for a range of heliostat elevation-azimuth configurations using a similar analogy to those in ASCE 7-02 for monoslope-roof buildings, ASCE 7-16 for rooftop solar panels, and in the literature on flat plates. It was found that the maximum hinge moment is strongly correlated to the centre of pressure movement from the heliostat central elevation axis. Application of stow and operating load coefficients to a full-scale 36 m2 heliostat showed that the maximum hinge moment remains below the stow hinge moment at maximum operating design gust wind speeds of 29 m/s in a suburban terrain and 33 m/s in a desert terrain. The operating hinge moments at elevation angles above 45° are less than 60% of the stow loads with a constant 40 m/s design wind speed. The results in the current study can be used to determine heliostat configurations and appropriate design wind speeds in different terrains leading to the maximum design wind loads on the elevation drive and foundation.
Solar Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.09.097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu