- home
- Advanced Search
- Energy Research
- SA
- PK
- Energy Research
- SA
- PK
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Walter de Gruyter GmbH Authors: Tanveer Anum; Abidin Zain Ul;Abstract Blood flow in narrow channels such as veins and arteries is the major topic of interest here. The Casson fluid with its shear-thinning attribute serves as the blood model. Owing to the arterial walls, the channel is configured curved in shape. The activation energy and nonlinear thermal radiation aspects are highlighted. The channel boundaries are flexible with peristaltic wave travelling along the channel. The mathematical description of the problem is developed under physical laws and then simplified using the lubrication technique. The obtained system is then sketched in graphs directly using the numerical scheme NDSolve in Mathematica software. The physical interpretation of parameters on axial velocity, temperature profile, concentration, and streamline pattern is discussed in the last section.
Journal of the Mecha... arrow_drop_down Journal of the Mechanical Behavior of MaterialsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/jmbm-2022-0278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Mecha... arrow_drop_down Journal of the Mechanical Behavior of MaterialsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/jmbm-2022-0278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Tanveer Sajid; Assad Ayub; Syed Zahir Hussain Shah; Wasim Jamshed; Mohamed R. Eid; El Sayed M. Tag El Din; Rida Irfan; Syed M. Hussain;doi: 10.3390/sym14091850
Heat transfer is a vital fact of daily life, engineering, and industrial mechanisms such as cryogenic systems, spaceborne thermal radiometers, electronic cooling, aircraft engine cooling, aircraft environmental control systems, etc. The addition of nanoparticles helps to stabilize the flowing of a nanofluid and keeps the symmetry of the flowing structure. Purpose: In this attempt, the effect of endothermic/exothermic chemical reactions accompanied by activation energy on a ternary hybrid nanofluid with the geometry of a wedge is taken into consideration. The mathematical form of PDEs is obtained by Navier–Stokes equations, the second law of thermodynamics, and Fick’s second law of diffusion. The geometric model is therefore described using a symmetry technique. Formulation: The MATLAB built-in Lobatto III A structure is utilized to find the computational solution of the dimensionless ODEs. All computational outcomes are presented by graphs and statistical graphs in order to check the performance of various dimensionless quantities against drag force factor and Nusselt quantity. Finding: the addition of tri-hybridizing nanomolecules in the standard liquid improves the thermic performance of the liquid much better in comparison to simple hybrid nanofluids. Wedge angle parameter α brings about a decrement in fluid velocity and augmentation in thermal conductivity ϵ, thermal radiation Rd, thermophoresis parameter Nt and endothermic/exothermic reaction Ω, and fitted rate constant n accelerates the heat transmission rate. Novelty: The effect of tri-hybridizing nanomolecules along with endothermic/exothermic reactions on the fluid past a wedge have not been investigated before in the available literature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14091850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14091850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Umair Khan; Aurang Zaib; Javali Madhukesh; Samia Elattar; Sayed Eldin; Anuar Ishak; Zehba Raizah; Iskandar Waini;doi: 10.3390/en15207613
The current exploration aims to inspect the features of thermal radiation on the buoyancy or mixed convective fluid flow induced by nanofluid through a stretching permeable bended sheet. The impact of activation energy and binary reaction along with slip migration is taken into account to discuss the fine points of water-based alumina nanoparticle flow. The structure of the curved sheet is assumed to be stretchable and the bended texture is coiled within a circular section with radius Rb. The similarity technique is utilized to reduce the leading partial differential equations into ordinary differential equations. These reduced equations are then deciphered numerically by employing the bvp4c method. The outcomes of the model were constructed in the form of several figures and bar graphs for the case of opposing and assisting flows with varying distinct embedded control parameters. The results display that the velocity field curves escalate with a higher radius of curvature parameter while temperature and concentration profiles shrink. More precisely, the outcomes show that the temperature distribution profile increases with the increase in nanoparticle’s volume fraction as well as thermal radiation parameter. Meanwhile, the concentration and velocity fields are decelerated with higher impacts of nanoparticle volume fraction. In addition, the heat and mass transfer rates were significantly improved for the higher value of the radiation and Schmidt number. On the other hand, the growing values of the velocity slip factor decrease the shear stress. Furthermore, the results are compared with the previous results in the limiting cases and observed a tremendous harmony.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Walter de Gruyter GmbH Authors: Ayyaz Muhammad;Abstract In this research work, thermal decomposition and kinetic analysis of pure and contaminated imidazolium based ionic liquid (IL) has been investigated. As thermal decomposition and kinetics evaluation plays a pivotal role in effective process design. Therefore, thermal stability of pure 1-butyl-2,3-dimethylimidazolium chloride (BDMIMCl) was found to be higher than the sample of IL with the addition of 20% (wt.) NH4Cl as an impurity. The activation energy of thermal degradation of IL and other kinetic parameters were determined using Coats Redfern method. The activation energy for pure IL was reduced in the presence of NH4Cl as contaminant i.e., from 58.7 kJ/mol to 46.4 kJ/mol.
Polish Journal of Ch... arrow_drop_down Polish Journal of Chemical TechnologyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/pjct-2016-0038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polish Journal of Ch... arrow_drop_down Polish Journal of Chemical TechnologyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/pjct-2016-0038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Authors: Al-Gahtany Samera Ali;Abstract In this study, the grafting of methyl methacrylate (MMA) in a solvent system containing nitrogen of pyridine onto LDPE films was performed using the post-irradiation technique in nitrogen at different gamma doses. The DG% obtained in MMA grafting was 71.0% at 10 kGy of γ dose was increased to 90% in (MMA/Py) (80/20 v/v%) system, indicating the existence of Py enhancement in the grafting % of MMA. The addition of pyridine (Py) into MMA matrix increases the molecular weight of the matrix due to the plasticizing effect of Py on the system. Morphological and structural changes in optical properties and thermogravimetric analysis were performed for the films. According to Fourier transform infrared data, a reaction may be placed between Py and MMA molecules. Furthermore, the effect of Py molecules on the optical properties of LDPE films is studied. The optical transition upon the grafting process increased, indicating the movement of the electrons due to intramolecular hydrogen bonds between MMA and Py molecules. The Urbach energy and the optical band gab, E g, were investigated and found to depend mainly on the grafting degree. The results obtained from E g calculations recommended using an irradiation dose of 15 kGy to get LDPE-g-MMA/Py films with suitable optical properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/epoly-2022-0081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/epoly-2022-0081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Syed Sohaib Zafar; Umair Khan; Farhan Ali; Sayed M. Eldin; Abdulkafi Mohammed Saeed; Aurang Zaib; Ahmed M. Galal;This communication elaborates the irreversibility analysis of the flow of Prandtl nanofluid along with thermal radiation past a permeable stretched surface embedded in a Darcy-Forchheimer medium. The activation and chemical impressions along with effects of thermophoretic and Brownian motion are as well examined. The flow symmetry of the problem is modeled mathematically and leading equations are rehabilitated into nonlinear ordinary differential equations (ODEs) through the assistance of suitable similarity variables. The Keller-box technique in MATLAB is employed to draw the impacts of the contributing elements on the velocity field, temperature distribution, and concentration. The impact of the Prandtl fluid parameter has mounting performance for the velocity whereas conflicting behavior is examined in the temperature profile. The achieved numerical results are matched correspondingly with the present symmetrical solutions in restrictive cases and fantastic agreement is scrutinized. In addition, the entropy generation uplifts for the growing values of the Prandtl fluid parameter, thermal radiation, and Brinkman number and decreases for growing numbers of the inertia coefficient parameter. It is also discovered that the coefficient of friction decreases for all parameters involved in the momentum equation. Features of nanofluids can be found in a variety of real-world fields, including microfluidics, industry, transportation, the military, and medicine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e14877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e14877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Sami Ullah Khan; Imen Safra; Kaouther Ghachem; Hind Albalawi; Taher Labidi; Lioua Kolsi;doi: 10.3390/sym15101847
This investigation is related to this study of entropy generation during Carreau nanofluid flow under variable thermal conductivity conditions. The heat and mass transfer phenomena are observed in the presence of thermal radiation and activation energy. The flow is induced by a porous stretching surface. Appropriate variables are used in order to simplify the problem into dimensionless form. The numerical simulations are performed by using the shooting technique. The physical aspects of the problem in view of different flow parameters are reported. It is observed that consideration of variable fluid thermal conductivity enhances heat transfer. An enhancement in heat and mass transfer phenomena is observed with increasing the Weissenberg number. Moreover, entropy generation increases with Weissenberg and Brinkman numbers. Current results present applications in thermal processes, heat exchangers, energy systems, combustion and engine design, chemical processes, refrigeration systems, etc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Umair Khan; Aurang Zaib; Anuar Ishak;Heat transfer machinery or technology is rapidly expanding due to the need for effective cooling and heating systems in the requisite automotive, chemical, and aerospace industries. This study aims to provide a numerical solution to wall jet (WJ) flow with mass and heat transport phenomenon comprising of the colloidal mixture of SAE50 and zinc oxide nanoparticles immersed in a Brinkman-extended Darcy model. The idea of WJ flow suggested by Glauert is further discussed along with the impact of the activation energy, thermal radiation, and binary chemical reaction. The leading equations are transformed into ordinary differential equations through proper similarity variables and then worked out numerically by employing a very efficient bvp4c method. The importance of pertaining quantities is illustrated and well explained through several tables and graphs. The major results suggest that the velocity profiles decline while the temperature and concentration augment due to the higher impact of nanoparticles volume fraction. In addition, the shear stress and heat transfer rate are accelerated by rising the volume fraction of nanoparticles while the Sherwood number declines with bigger impacts of nanoparticle volume fraction. In addition, the radiation factor progresses the quantitative outcomes of the heat transfer rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/lubricants11010022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/lubricants11010022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Zhang Juan; Wang Fuzhang; Tamoor Muhammad; Kamran Muhammad; Farooq Aamir; Rehman Sadique; Aljohani Amnah S.; Khan Ilyas; Alkhatib Soliman; Ahmad Hijaz;Abstract Our key objective in the present work is to elaborate the concept of activation energy in chemically reactive flow with the help of modeling and computation. The model investigated is fluid flow over a vertical cylinder in the porous medium with chemical reaction and radiation effect. The similarity transform converted the resulting constitutive equations and partial differential equations (PDEs) into ordinary differential equations (ODEs). The resulting non-linear momentum, heat transfer, and mass transfer coupled equations are computed with the Range–Kutta–Fehlberg method. Both assisting and non-assisting buoyant flow conditions are considered, and observed numeric solutions vary with the transport properties. Characteristics of momentum, heat, and concentration under the applied boundary conditions are analyzed. In addition, the increment in activation energy parameters boosts the Lorentz force and mass transfer rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/phys-2022-0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/phys-2022-0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Khursheed Muhammad; T. Hayat; Inayat Ullah; S. Momani;In this study, an analysis was performed to investigate the thermal and mass transport of radiative flow of a third-grade nanofluid with magnetohydrodynamic. The analysis concerns two-dimensional flow around an infinite disk. Heat transport is studied via heat generation/absorption, thermal radiation and Joule heating. Chemical reaction with activation energy is also considered. The nanofluid characteristics, including Brownian motion and thermophoretic diffusion, are explored via the Buongiorno model. Entropy analysis is also conducted. Moreover, the surface tension is assumed to be a linear function of concentration and temperature. Through adequate dimensionless variables, governed PDEs are non-dimensionlized and then tackled by ND-solve (a numerical method in Mathematica) for solutions purposes. Entropy generation, concentration, velocity, Bejan number and temperature are plotted as functions of the involved physical parameters. It is noticed that higher Marangoni number intensify velocity however it causes a decrease in the temperature. Entropy rate and Bejan number boost for large value of diffusion parameter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e16192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e16192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Walter de Gruyter GmbH Authors: Tanveer Anum; Abidin Zain Ul;Abstract Blood flow in narrow channels such as veins and arteries is the major topic of interest here. The Casson fluid with its shear-thinning attribute serves as the blood model. Owing to the arterial walls, the channel is configured curved in shape. The activation energy and nonlinear thermal radiation aspects are highlighted. The channel boundaries are flexible with peristaltic wave travelling along the channel. The mathematical description of the problem is developed under physical laws and then simplified using the lubrication technique. The obtained system is then sketched in graphs directly using the numerical scheme NDSolve in Mathematica software. The physical interpretation of parameters on axial velocity, temperature profile, concentration, and streamline pattern is discussed in the last section.
Journal of the Mecha... arrow_drop_down Journal of the Mechanical Behavior of MaterialsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/jmbm-2022-0278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Mecha... arrow_drop_down Journal of the Mechanical Behavior of MaterialsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/jmbm-2022-0278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Tanveer Sajid; Assad Ayub; Syed Zahir Hussain Shah; Wasim Jamshed; Mohamed R. Eid; El Sayed M. Tag El Din; Rida Irfan; Syed M. Hussain;doi: 10.3390/sym14091850
Heat transfer is a vital fact of daily life, engineering, and industrial mechanisms such as cryogenic systems, spaceborne thermal radiometers, electronic cooling, aircraft engine cooling, aircraft environmental control systems, etc. The addition of nanoparticles helps to stabilize the flowing of a nanofluid and keeps the symmetry of the flowing structure. Purpose: In this attempt, the effect of endothermic/exothermic chemical reactions accompanied by activation energy on a ternary hybrid nanofluid with the geometry of a wedge is taken into consideration. The mathematical form of PDEs is obtained by Navier–Stokes equations, the second law of thermodynamics, and Fick’s second law of diffusion. The geometric model is therefore described using a symmetry technique. Formulation: The MATLAB built-in Lobatto III A structure is utilized to find the computational solution of the dimensionless ODEs. All computational outcomes are presented by graphs and statistical graphs in order to check the performance of various dimensionless quantities against drag force factor and Nusselt quantity. Finding: the addition of tri-hybridizing nanomolecules in the standard liquid improves the thermic performance of the liquid much better in comparison to simple hybrid nanofluids. Wedge angle parameter α brings about a decrement in fluid velocity and augmentation in thermal conductivity ϵ, thermal radiation Rd, thermophoresis parameter Nt and endothermic/exothermic reaction Ω, and fitted rate constant n accelerates the heat transmission rate. Novelty: The effect of tri-hybridizing nanomolecules along with endothermic/exothermic reactions on the fluid past a wedge have not been investigated before in the available literature.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14091850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym14091850&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Umair Khan; Aurang Zaib; Javali Madhukesh; Samia Elattar; Sayed Eldin; Anuar Ishak; Zehba Raizah; Iskandar Waini;doi: 10.3390/en15207613
The current exploration aims to inspect the features of thermal radiation on the buoyancy or mixed convective fluid flow induced by nanofluid through a stretching permeable bended sheet. The impact of activation energy and binary reaction along with slip migration is taken into account to discuss the fine points of water-based alumina nanoparticle flow. The structure of the curved sheet is assumed to be stretchable and the bended texture is coiled within a circular section with radius Rb. The similarity technique is utilized to reduce the leading partial differential equations into ordinary differential equations. These reduced equations are then deciphered numerically by employing the bvp4c method. The outcomes of the model were constructed in the form of several figures and bar graphs for the case of opposing and assisting flows with varying distinct embedded control parameters. The results display that the velocity field curves escalate with a higher radius of curvature parameter while temperature and concentration profiles shrink. More precisely, the outcomes show that the temperature distribution profile increases with the increase in nanoparticle’s volume fraction as well as thermal radiation parameter. Meanwhile, the concentration and velocity fields are decelerated with higher impacts of nanoparticle volume fraction. In addition, the heat and mass transfer rates were significantly improved for the higher value of the radiation and Schmidt number. On the other hand, the growing values of the velocity slip factor decrease the shear stress. Furthermore, the results are compared with the previous results in the limiting cases and observed a tremendous harmony.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Walter de Gruyter GmbH Authors: Ayyaz Muhammad;Abstract In this research work, thermal decomposition and kinetic analysis of pure and contaminated imidazolium based ionic liquid (IL) has been investigated. As thermal decomposition and kinetics evaluation plays a pivotal role in effective process design. Therefore, thermal stability of pure 1-butyl-2,3-dimethylimidazolium chloride (BDMIMCl) was found to be higher than the sample of IL with the addition of 20% (wt.) NH4Cl as an impurity. The activation energy of thermal degradation of IL and other kinetic parameters were determined using Coats Redfern method. The activation energy for pure IL was reduced in the presence of NH4Cl as contaminant i.e., from 58.7 kJ/mol to 46.4 kJ/mol.
Polish Journal of Ch... arrow_drop_down Polish Journal of Chemical TechnologyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/pjct-2016-0038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polish Journal of Ch... arrow_drop_down Polish Journal of Chemical TechnologyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/pjct-2016-0038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Authors: Al-Gahtany Samera Ali;Abstract In this study, the grafting of methyl methacrylate (MMA) in a solvent system containing nitrogen of pyridine onto LDPE films was performed using the post-irradiation technique in nitrogen at different gamma doses. The DG% obtained in MMA grafting was 71.0% at 10 kGy of γ dose was increased to 90% in (MMA/Py) (80/20 v/v%) system, indicating the existence of Py enhancement in the grafting % of MMA. The addition of pyridine (Py) into MMA matrix increases the molecular weight of the matrix due to the plasticizing effect of Py on the system. Morphological and structural changes in optical properties and thermogravimetric analysis were performed for the films. According to Fourier transform infrared data, a reaction may be placed between Py and MMA molecules. Furthermore, the effect of Py molecules on the optical properties of LDPE films is studied. The optical transition upon the grafting process increased, indicating the movement of the electrons due to intramolecular hydrogen bonds between MMA and Py molecules. The Urbach energy and the optical band gab, E g, were investigated and found to depend mainly on the grafting degree. The results obtained from E g calculations recommended using an irradiation dose of 15 kGy to get LDPE-g-MMA/Py films with suitable optical properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/epoly-2022-0081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/epoly-2022-0081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Syed Sohaib Zafar; Umair Khan; Farhan Ali; Sayed M. Eldin; Abdulkafi Mohammed Saeed; Aurang Zaib; Ahmed M. Galal;This communication elaborates the irreversibility analysis of the flow of Prandtl nanofluid along with thermal radiation past a permeable stretched surface embedded in a Darcy-Forchheimer medium. The activation and chemical impressions along with effects of thermophoretic and Brownian motion are as well examined. The flow symmetry of the problem is modeled mathematically and leading equations are rehabilitated into nonlinear ordinary differential equations (ODEs) through the assistance of suitable similarity variables. The Keller-box technique in MATLAB is employed to draw the impacts of the contributing elements on the velocity field, temperature distribution, and concentration. The impact of the Prandtl fluid parameter has mounting performance for the velocity whereas conflicting behavior is examined in the temperature profile. The achieved numerical results are matched correspondingly with the present symmetrical solutions in restrictive cases and fantastic agreement is scrutinized. In addition, the entropy generation uplifts for the growing values of the Prandtl fluid parameter, thermal radiation, and Brinkman number and decreases for growing numbers of the inertia coefficient parameter. It is also discovered that the coefficient of friction decreases for all parameters involved in the momentum equation. Features of nanofluids can be found in a variety of real-world fields, including microfluidics, industry, transportation, the military, and medicine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e14877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e14877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Sami Ullah Khan; Imen Safra; Kaouther Ghachem; Hind Albalawi; Taher Labidi; Lioua Kolsi;doi: 10.3390/sym15101847
This investigation is related to this study of entropy generation during Carreau nanofluid flow under variable thermal conductivity conditions. The heat and mass transfer phenomena are observed in the presence of thermal radiation and activation energy. The flow is induced by a porous stretching surface. Appropriate variables are used in order to simplify the problem into dimensionless form. The numerical simulations are performed by using the shooting technique. The physical aspects of the problem in view of different flow parameters are reported. It is observed that consideration of variable fluid thermal conductivity enhances heat transfer. An enhancement in heat and mass transfer phenomena is observed with increasing the Weissenberg number. Moreover, entropy generation increases with Weissenberg and Brinkman numbers. Current results present applications in thermal processes, heat exchangers, energy systems, combustion and engine design, chemical processes, refrigeration systems, etc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/sym15101847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Umair Khan; Aurang Zaib; Anuar Ishak;Heat transfer machinery or technology is rapidly expanding due to the need for effective cooling and heating systems in the requisite automotive, chemical, and aerospace industries. This study aims to provide a numerical solution to wall jet (WJ) flow with mass and heat transport phenomenon comprising of the colloidal mixture of SAE50 and zinc oxide nanoparticles immersed in a Brinkman-extended Darcy model. The idea of WJ flow suggested by Glauert is further discussed along with the impact of the activation energy, thermal radiation, and binary chemical reaction. The leading equations are transformed into ordinary differential equations through proper similarity variables and then worked out numerically by employing a very efficient bvp4c method. The importance of pertaining quantities is illustrated and well explained through several tables and graphs. The major results suggest that the velocity profiles decline while the temperature and concentration augment due to the higher impact of nanoparticles volume fraction. In addition, the shear stress and heat transfer rate are accelerated by rising the volume fraction of nanoparticles while the Sherwood number declines with bigger impacts of nanoparticle volume fraction. In addition, the radiation factor progresses the quantitative outcomes of the heat transfer rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/lubricants11010022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/lubricants11010022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Walter de Gruyter GmbH Zhang Juan; Wang Fuzhang; Tamoor Muhammad; Kamran Muhammad; Farooq Aamir; Rehman Sadique; Aljohani Amnah S.; Khan Ilyas; Alkhatib Soliman; Ahmad Hijaz;Abstract Our key objective in the present work is to elaborate the concept of activation energy in chemically reactive flow with the help of modeling and computation. The model investigated is fluid flow over a vertical cylinder in the porous medium with chemical reaction and radiation effect. The similarity transform converted the resulting constitutive equations and partial differential equations (PDEs) into ordinary differential equations (ODEs). The resulting non-linear momentum, heat transfer, and mass transfer coupled equations are computed with the Range–Kutta–Fehlberg method. Both assisting and non-assisting buoyant flow conditions are considered, and observed numeric solutions vary with the transport properties. Characteristics of momentum, heat, and concentration under the applied boundary conditions are analyzed. In addition, the increment in activation energy parameters boosts the Lorentz force and mass transfer rate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/phys-2022-0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/phys-2022-0028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Khursheed Muhammad; T. Hayat; Inayat Ullah; S. Momani;In this study, an analysis was performed to investigate the thermal and mass transport of radiative flow of a third-grade nanofluid with magnetohydrodynamic. The analysis concerns two-dimensional flow around an infinite disk. Heat transport is studied via heat generation/absorption, thermal radiation and Joule heating. Chemical reaction with activation energy is also considered. The nanofluid characteristics, including Brownian motion and thermophoretic diffusion, are explored via the Buongiorno model. Entropy analysis is also conducted. Moreover, the surface tension is assumed to be a linear function of concentration and temperature. Through adequate dimensionless variables, governed PDEs are non-dimensionlized and then tackled by ND-solve (a numerical method in Mathematica) for solutions purposes. Entropy generation, concentration, velocity, Bejan number and temperature are plotted as functions of the involved physical parameters. It is noticed that higher Marangoni number intensify velocity however it causes a decrease in the temperature. Entropy rate and Bejan number boost for large value of diffusion parameter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e16192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e16192&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu