- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Authors: Rocco, Matteo V.; Casalegno, Andrea; Colombo, Emanuela;handle: 11311/1069457
Abstract According to IEA projections, the penetration of electric vehicles in the world transportation sector is expected to increase in the next decades to comply with the future GHG emissions policy targets. The change in transport technology mix will cause a change the environmental and economic impacts of the transportation sector, switching it from flows to funds, that is, from the production and use of the fuel to the production of the fuel pathway and powertrain infrastructures. Therefore, due to their comprehensiveness, the use of Life Cycle Assessment models will be increasingly important with respect to Well-to-Wheels ones in assessing the impact of future transport technologies. In this paper, the Hybrid Input-Output analysis is proposed as the appropriate framework to assess the impact due to a change in transport technology mix from a LCA perspective. First, LCA and WTW approaches are theoretically compared. Secondly, the LCA model is applied for the analysis of the economic and environmental impact caused by the prospected penetration of Fuel Cell Electric Vehicles (FCEV) based on Proton Exchange Membrane Fuel Cell (PEMFC) for Germany in 2050. In addition to the production of the vehicles, the LCA model includes the infrastructures for hydrogen production and distribution and the prospected change in the national electricity production mix. Significant discrepancies have been found by comparing results of LCA with the ones obtained by well-established WTW models already available in the literature. It is found that the impact caused by infrastructures and production of vehicles could significantly offset the expected reduction in CO2 emissions and primary non-renewable energy consumptions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Royal Society of Chemistry (RSC) Baricci A.; Bisello A.; Serov A.; Odgaard M.; Atanassov P.; Casalegno A.;doi: 10.1039/c9se00252a
handle: 11311/1124218
A simple approach based on electrochemical impedance spectroscopy measurement is adopted to elucidate the effect of mixed ion and electron transport limitations during materials aging in platinum group metal-free catalysts for PEMFC.
RE.PUBLIC@POLIMI Res... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Marco Cecchetti; Thomas A. Ebaugh; Leonard Bonville; Radenka Maric; Andrea Casalegno; Matteo Zago;Vanadium redox flow battery (VRFB) is a very promising solution for large‐scale energy storage, but some technical issues need to be addressed. Crossover, i.e., the undesired permeation of vanadium ions through the cell separator, causes capacity loss and self‐discharge. Low‐cost and highly selective separators are thus required to improve the competitiveness of this technology. This work investigates the use of silica nanoparticles in an innovative selective layer to improve membrane selectivity and reduce its thickness. 1.5 μm thick barrier layers composed of 1100EW Nafion ionomer with silica (≈3–13 nm diameter) and Vulcan XC‐72R (≈40 nm) nanoparticles in different proportions are directly deposited on 50 μm thick Nafion membranes. The barrier layer composed only of silica nanoparticles reduces the self‐discharge due to crossover by 5 times and increases the average efficiency of the battery. Finally, during more than 1000 h of operation, the barrier layer on a 25 μm Nafion membrane demonstrates excellent stability, working with a constant coulombic efficiency higher than 99% and a capacity decay rate comparable with a thicker Nafion membrane, thus enabling the use of thinner membranes in VRFB, allowing an estimated 8% stack costs reduction with respect to NR212.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Elsevier BV BARICCI, ANDREA; MEREU, RICCARDO; MESSAGGI, MIRKO; ZAGO, MATTEO; INZOLI, FABIO; CASALEGNO, ANDREA;handle: 11311/1033067
Abstract Polymer electrolyte membrane fuel cells are devices that produce power by direct conversion of hydrogen via electrochemical route and are promising for energy applications, mainly because no direct pollutants are produced during operation. Automotive is the major industrial application for polymer fuel cells, which could replace internal combustion engines as power sources, conditionally to the achievement of a significant cost reduction. Increasing power density and reducing the loading of precious metal based catalysts is thus a technological priority. In this direction, the geometry of the flow field plays a dramatic role: at state of the art, hydrogen and oxygen are distributed over the fuel cell area through channels. Non-uniform distribution of reactants, which results from non-optimal flow field design, determines heterogeneity during operation, loss of efficiency and accelerates ageing. In this work, computational fluid dynamics is used to analyse oxygen transport in a low platinum polymer electrolyte fuel cell for automotive applications. Analysis focuses on the effect of 3D geometrical features that are present in state of the art flow fields. Comparison of three flow fields (straight channel, serpentine and interdigitated) is performed and it is observed that the contact points between the GDL and the current collector determine significant performance loss because of sluggish oxygen transport in these regions. Nevertheless, a trade off with electron transport through the GDL must be considered. To support the conclusions of the work, an original methodology is adopted, by simulating electrochemical impedance spectroscopy, an experimental transient technique that allows to selectively evidence the effect of mass transport from other physical phenomena.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Toja, F; Perlini, L; Facchi, D; Casalegno, A; Zago, M;handle: 11311/1258913
Electrolyte imbalance caused by the undesired vanadium-ions cross-over and water transport through the membrane is one of the main critical issues of vanadium redox flow batteries, leading to battery capacity loss and electrolytes volume variation. In this work, the evolution of discharged capacity and electrolyte volume variation were firstly investigated adopting commercial electrolyte for hundreds of charge-discharge cycles in vanadium redox flow batteries employing different membranes, varying thickness and equivalent weight. Subsequently, with the support of a 1D physics-based model, the origin of the main phenomena regulating capacity decay and volume variation has been identified and different modifications in the preparation of electrolytes have been proposed. Electrolytes characterized by an equal proton concentration between the two tanks at the beginning of cycling operation turned out to limit capacity decay, while increasing electrolyte proton concentration was effective also in the mitigation of volume variation. The most promising electrolyte preparation combined the effect of high proton concentration and null osmotic pressure gradient between the two tanks: compared to commercial electrolyte this preparation reduced the capacity decay from 47.7% to 20.9%, increased the coulombic efficiency from 96.2% to 98.9% and the energy one from 79.9% to 83.4%, and also implied a negligible volume variation during cycles. The effectiveness of this electrolyte preparation has been verified with different membranes, increasing the range of validity of the results, that could be thus applied in a real system regardless of the adopted membrane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:The Electrochemical Society Funded by:EC | ID-FASTEC| ID-FASTAndrea Bisello; Elena Colombo; Andrea Baricci; Claudio Rabissi; Laure Guetaz; Pawel Gazdzicki; Andrea Casalegno;handle: 11311/1177724
This study combines local electrochemical diagnostics with ex situ analysis to investigate degradation mechanism associated to start-up/shut-down (SU/SD) of PEMFC and mitigation strategies adopted in automotive stacks. Local degradation resulting from repeated SU/SD was analyzed with and without mitigation strategies by means of a macro-segmented cell setup provided with Reference Hydrogen Electrodes (RHEs) at both anode and cathode to measure local electrodes potential and current. Accelerated Stress Test (AST) for start-up with and without mitigation strategies are proposed and validated. A ten-fold acceleration of performance loss due to un-mitigated SU/SD has been calculated with respect to AST for catalyst support. Under mitigated SU/SD, instead, a strong degradation was observed as localized at cathode inlet region (i.e. −38% ECSA loss and −22 mV voltage loss after 200 cycles) due to local potentials transient reaching up to 1.5 V vs RHE. These localized stress conditions were additionally reproduced in a zero-gradient and a new AST protocol (named start-up AST) was proposed to mimic the potential profile observed upon SU/SD cycling. Representativeness of the start-up AST for real world degradation was confirmed up to 200 cycles. Platinum dissolution and diffusion/precipitation within the polymer electrolyte was shown to be the dominant mechanism affecting performance loss.
RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Funded by:EC | SECOND ACTEC| SECOND ACTBRESCIANI, FAUSTO; RABISSI, CLAUDIO; ZAGO, MATTEO; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J. L.; MARCHESI, RENZO; CASALEGNO, ANDREA;handle: 11311/978982
Abstract Performance degradation is one of the key issues hindering direct methanol fuel cell commercialization, caused by different mechanisms interplaying locally and resulting in both temporary and permanent contributions. This work proposes a systematic experimental investigation, coupling in-situ diagnostics (electrochemical and mass transport investigation) with ex-situ analyses of pristine, activated and aged components (X-ray photoelectron spectroscopy and transmission electron microscopy), with an in-plane and through-plane local resolution. Such a combined approach allows to identify on one hand the degradation mechanisms, the affected components and the presence of heterogeneities; on the other hand, it allows to quantify the effect of the major mechanisms on performance decay. Thanks to a novel procedure, temporary (21 μV h−1) and permanent degradation (59 μV h−1) are separated, distinguishing the latter in different contributions: the effects of active area loss at both at anode (9 μV h−1) and cathode (31 μV h−1), mass transport issue (15 μV h−1) and membrane decay (4 μV h−1). The post-mortem analysis highlights the effect of degradation mechanisms consistent with the in-situ analysis and reveals the presence of considerable in plane and through plane heterogeneities in: particle size growth in catalyst layers, Pt/Ru and polymer content in catalyst and diffusion layers, Pt/Ru precipitates in the membrane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | DigiPrime, UKRI | Smarthubs SLESEC| DigiPrime ,UKRI| Smarthubs SLESAuthors: Gabriele Sordi; Claudio Rabissi; Andrea Casalegno;doi: 10.3390/en16124730
handle: 11311/1246879
Among lithium-ion battery diagnostic tests, electrochemical impedance spectroscopy, being highly informative on the physics of battery operation within limited testing times, deserves a prominent role in the identification of model parameters and the interpretation of battery state. Nevertheless, a reliable physical simulation and interpretation of battery impedance spectra is still to be addressed, due to its intrinsic complexity. An improved methodology for the calibration of a state-of-the-art physical model is hereby presented, focusing on high-energy batteries, which themselves require a careful focus on the high-frequency resistance of the impedance response. In this work, the common assumption of the infinite conductivity of the current collectors is questioned, presenting an improved methodology for simulating the pure resistance of the cell. This enables us to assign the proper contribution value to current collectors’ resistance and, in turn, not to underestimate electrolyte conductivity, thereby preserving the physical relation between electrolyte conductivity and diffusivity and avoiding physical inconsistencies between impedance spectra and charge–discharge curves. The methodology is applied to the calibration of the model on a commercial sample, demonstrating the reliability and physical consistency of the solution with a set of discharge curves, EIS, and a dynamic driving cycle under a wide range of operating conditions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV NAJAFI, BEHZAD; DE ANTONELLIS, STEFANO; INTINI, MANUEL; ZAGO, MATTEO; RINALDI, FABIO; CASALEGNO, ANDREA;handle: 11311/978776
Abstract Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between the increment in the gross electrical efficiency and the lower slope of decrement in the auxiliary losses. The obtained results are suitable to be employed to assess the performance of the overall tri-generative system, conducted in the second part of the study, while meeting intermittent load profiles.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV MESSAGGI, MIRKO; CANZI, PATRIZIO; Mereu, R.; Baricci, A.; Inzoli, F.; Casalegno, A.; Zago, M.;handle: 11311/1064967
Abstract Homogeneous distribution of the electrolyte over the porous electrode is a critical issue hindering the commercialization of vanadium redox flow batteries, owing to increased overpotential at high current and limited power density of the system. Therefore, an understanding of the physical phenomena regulating mass transport of the electrolyte is crucial to improving system performance. The present work describes the development and experimental validation of a 3D computational fluid dynamic model of a vanadium redox flow battery in a half-cell configuration with an active area of 25 cm2. The model simulates the influence of a single serpentine and an interdigitated flow field. The adoption of the half-cell configuration allows the negative electrode to be considered as a pseudo-reference electrode with zero potential loss, leading to a reduction in computation time and the number of fitting parameters, which can be determined with reduced uncertainty. The developed model includes a traditional fluid dynamic analysis of the electrolyte in the flow field and in the porous electrode, coupled with the electrochemistry of the reactions involved. In both the experiments and the simulations, the single serpentine distributor exhibits better performance and higher pressure drops compared to those of the interdigitated geometry under all the investigated operating conditions. In the analysis of the local reaction rate, both distributors experienced increased reaction rates under the rib, induced by a by-pass flow between adjacent channels. The reaction rate shows a highly heterogeneous distribution in the serpentine geometry, while it is more uniform in the interdigitated configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Authors: Rocco, Matteo V.; Casalegno, Andrea; Colombo, Emanuela;handle: 11311/1069457
Abstract According to IEA projections, the penetration of electric vehicles in the world transportation sector is expected to increase in the next decades to comply with the future GHG emissions policy targets. The change in transport technology mix will cause a change the environmental and economic impacts of the transportation sector, switching it from flows to funds, that is, from the production and use of the fuel to the production of the fuel pathway and powertrain infrastructures. Therefore, due to their comprehensiveness, the use of Life Cycle Assessment models will be increasingly important with respect to Well-to-Wheels ones in assessing the impact of future transport technologies. In this paper, the Hybrid Input-Output analysis is proposed as the appropriate framework to assess the impact due to a change in transport technology mix from a LCA perspective. First, LCA and WTW approaches are theoretically compared. Secondly, the LCA model is applied for the analysis of the economic and environmental impact caused by the prospected penetration of Fuel Cell Electric Vehicles (FCEV) based on Proton Exchange Membrane Fuel Cell (PEMFC) for Germany in 2050. In addition to the production of the vehicles, the LCA model includes the infrastructures for hydrogen production and distribution and the prospected change in the national electricity production mix. Significant discrepancies have been found by comparing results of LCA with the ones obtained by well-established WTW models already available in the literature. It is found that the impact caused by infrastructures and production of vehicles could significantly offset the expected reduction in CO2 emissions and primary non-renewable energy consumptions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Royal Society of Chemistry (RSC) Baricci A.; Bisello A.; Serov A.; Odgaard M.; Atanassov P.; Casalegno A.;doi: 10.1039/c9se00252a
handle: 11311/1124218
A simple approach based on electrochemical impedance spectroscopy measurement is adopted to elucidate the effect of mixed ion and electron transport limitations during materials aging in platinum group metal-free catalysts for PEMFC.
RE.PUBLIC@POLIMI Res... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Marco Cecchetti; Thomas A. Ebaugh; Leonard Bonville; Radenka Maric; Andrea Casalegno; Matteo Zago;Vanadium redox flow battery (VRFB) is a very promising solution for large‐scale energy storage, but some technical issues need to be addressed. Crossover, i.e., the undesired permeation of vanadium ions through the cell separator, causes capacity loss and self‐discharge. Low‐cost and highly selective separators are thus required to improve the competitiveness of this technology. This work investigates the use of silica nanoparticles in an innovative selective layer to improve membrane selectivity and reduce its thickness. 1.5 μm thick barrier layers composed of 1100EW Nafion ionomer with silica (≈3–13 nm diameter) and Vulcan XC‐72R (≈40 nm) nanoparticles in different proportions are directly deposited on 50 μm thick Nafion membranes. The barrier layer composed only of silica nanoparticles reduces the self‐discharge due to crossover by 5 times and increases the average efficiency of the battery. Finally, during more than 1000 h of operation, the barrier layer on a 25 μm Nafion membrane demonstrates excellent stability, working with a constant coulombic efficiency higher than 99% and a capacity decay rate comparable with a thicker Nafion membrane, thus enabling the use of thinner membranes in VRFB, allowing an estimated 8% stack costs reduction with respect to NR212.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Elsevier BV BARICCI, ANDREA; MEREU, RICCARDO; MESSAGGI, MIRKO; ZAGO, MATTEO; INZOLI, FABIO; CASALEGNO, ANDREA;handle: 11311/1033067
Abstract Polymer electrolyte membrane fuel cells are devices that produce power by direct conversion of hydrogen via electrochemical route and are promising for energy applications, mainly because no direct pollutants are produced during operation. Automotive is the major industrial application for polymer fuel cells, which could replace internal combustion engines as power sources, conditionally to the achievement of a significant cost reduction. Increasing power density and reducing the loading of precious metal based catalysts is thus a technological priority. In this direction, the geometry of the flow field plays a dramatic role: at state of the art, hydrogen and oxygen are distributed over the fuel cell area through channels. Non-uniform distribution of reactants, which results from non-optimal flow field design, determines heterogeneity during operation, loss of efficiency and accelerates ageing. In this work, computational fluid dynamics is used to analyse oxygen transport in a low platinum polymer electrolyte fuel cell for automotive applications. Analysis focuses on the effect of 3D geometrical features that are present in state of the art flow fields. Comparison of three flow fields (straight channel, serpentine and interdigitated) is performed and it is observed that the contact points between the GDL and the current collector determine significant performance loss because of sluggish oxygen transport in these regions. Nevertheless, a trade off with electron transport through the GDL must be considered. To support the conclusions of the work, an original methodology is adopted, by simulating electrochemical impedance spectroscopy, an experimental transient technique that allows to selectively evidence the effect of mass transport from other physical phenomena.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Toja, F; Perlini, L; Facchi, D; Casalegno, A; Zago, M;handle: 11311/1258913
Electrolyte imbalance caused by the undesired vanadium-ions cross-over and water transport through the membrane is one of the main critical issues of vanadium redox flow batteries, leading to battery capacity loss and electrolytes volume variation. In this work, the evolution of discharged capacity and electrolyte volume variation were firstly investigated adopting commercial electrolyte for hundreds of charge-discharge cycles in vanadium redox flow batteries employing different membranes, varying thickness and equivalent weight. Subsequently, with the support of a 1D physics-based model, the origin of the main phenomena regulating capacity decay and volume variation has been identified and different modifications in the preparation of electrolytes have been proposed. Electrolytes characterized by an equal proton concentration between the two tanks at the beginning of cycling operation turned out to limit capacity decay, while increasing electrolyte proton concentration was effective also in the mitigation of volume variation. The most promising electrolyte preparation combined the effect of high proton concentration and null osmotic pressure gradient between the two tanks: compared to commercial electrolyte this preparation reduced the capacity decay from 47.7% to 20.9%, increased the coulombic efficiency from 96.2% to 98.9% and the energy one from 79.9% to 83.4%, and also implied a negligible volume variation during cycles. The effectiveness of this electrolyte preparation has been verified with different membranes, increasing the range of validity of the results, that could be thus applied in a real system regardless of the adopted membrane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:The Electrochemical Society Funded by:EC | ID-FASTEC| ID-FASTAndrea Bisello; Elena Colombo; Andrea Baricci; Claudio Rabissi; Laure Guetaz; Pawel Gazdzicki; Andrea Casalegno;handle: 11311/1177724
This study combines local electrochemical diagnostics with ex situ analysis to investigate degradation mechanism associated to start-up/shut-down (SU/SD) of PEMFC and mitigation strategies adopted in automotive stacks. Local degradation resulting from repeated SU/SD was analyzed with and without mitigation strategies by means of a macro-segmented cell setup provided with Reference Hydrogen Electrodes (RHEs) at both anode and cathode to measure local electrodes potential and current. Accelerated Stress Test (AST) for start-up with and without mitigation strategies are proposed and validated. A ten-fold acceleration of performance loss due to un-mitigated SU/SD has been calculated with respect to AST for catalyst support. Under mitigated SU/SD, instead, a strong degradation was observed as localized at cathode inlet region (i.e. −38% ECSA loss and −22 mV voltage loss after 200 cycles) due to local potentials transient reaching up to 1.5 V vs RHE. These localized stress conditions were additionally reproduced in a zero-gradient and a new AST protocol (named start-up AST) was proposed to mimic the potential profile observed upon SU/SD cycling. Representativeness of the start-up AST for real world degradation was confirmed up to 200 cycles. Platinum dissolution and diffusion/precipitation within the polymer electrolyte was shown to be the dominant mechanism affecting performance loss.
RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefJournal of The Electrochemical SocietyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Funded by:EC | SECOND ACTEC| SECOND ACTBRESCIANI, FAUSTO; RABISSI, CLAUDIO; ZAGO, MATTEO; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J. L.; MARCHESI, RENZO; CASALEGNO, ANDREA;handle: 11311/978982
Abstract Performance degradation is one of the key issues hindering direct methanol fuel cell commercialization, caused by different mechanisms interplaying locally and resulting in both temporary and permanent contributions. This work proposes a systematic experimental investigation, coupling in-situ diagnostics (electrochemical and mass transport investigation) with ex-situ analyses of pristine, activated and aged components (X-ray photoelectron spectroscopy and transmission electron microscopy), with an in-plane and through-plane local resolution. Such a combined approach allows to identify on one hand the degradation mechanisms, the affected components and the presence of heterogeneities; on the other hand, it allows to quantify the effect of the major mechanisms on performance decay. Thanks to a novel procedure, temporary (21 μV h−1) and permanent degradation (59 μV h−1) are separated, distinguishing the latter in different contributions: the effects of active area loss at both at anode (9 μV h−1) and cathode (31 μV h−1), mass transport issue (15 μV h−1) and membrane decay (4 μV h−1). The post-mortem analysis highlights the effect of degradation mechanisms consistent with the in-situ analysis and reveals the presence of considerable in plane and through plane heterogeneities in: particle size growth in catalyst layers, Pt/Ru and polymer content in catalyst and diffusion layers, Pt/Ru precipitates in the membrane.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | DigiPrime, UKRI | Smarthubs SLESEC| DigiPrime ,UKRI| Smarthubs SLESAuthors: Gabriele Sordi; Claudio Rabissi; Andrea Casalegno;doi: 10.3390/en16124730
handle: 11311/1246879
Among lithium-ion battery diagnostic tests, electrochemical impedance spectroscopy, being highly informative on the physics of battery operation within limited testing times, deserves a prominent role in the identification of model parameters and the interpretation of battery state. Nevertheless, a reliable physical simulation and interpretation of battery impedance spectra is still to be addressed, due to its intrinsic complexity. An improved methodology for the calibration of a state-of-the-art physical model is hereby presented, focusing on high-energy batteries, which themselves require a careful focus on the high-frequency resistance of the impedance response. In this work, the common assumption of the infinite conductivity of the current collectors is questioned, presenting an improved methodology for simulating the pure resistance of the cell. This enables us to assign the proper contribution value to current collectors’ resistance and, in turn, not to underestimate electrolyte conductivity, thereby preserving the physical relation between electrolyte conductivity and diffusivity and avoiding physical inconsistencies between impedance spectra and charge–discharge curves. The methodology is applied to the calibration of the model on a commercial sample, demonstrating the reliability and physical consistency of the solution with a set of discharge curves, EIS, and a dynamic driving cycle under a wide range of operating conditions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/12/4730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV NAJAFI, BEHZAD; DE ANTONELLIS, STEFANO; INTINI, MANUEL; ZAGO, MATTEO; RINALDI, FABIO; CASALEGNO, ANDREA;handle: 11311/978776
Abstract Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between the increment in the gross electrical efficiency and the lower slope of decrement in the auxiliary losses. The obtained results are suitable to be employed to assess the performance of the overall tri-generative system, conducted in the second part of the study, while meeting intermittent load profiles.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV MESSAGGI, MIRKO; CANZI, PATRIZIO; Mereu, R.; Baricci, A.; Inzoli, F.; Casalegno, A.; Zago, M.;handle: 11311/1064967
Abstract Homogeneous distribution of the electrolyte over the porous electrode is a critical issue hindering the commercialization of vanadium redox flow batteries, owing to increased overpotential at high current and limited power density of the system. Therefore, an understanding of the physical phenomena regulating mass transport of the electrolyte is crucial to improving system performance. The present work describes the development and experimental validation of a 3D computational fluid dynamic model of a vanadium redox flow battery in a half-cell configuration with an active area of 25 cm2. The model simulates the influence of a single serpentine and an interdigitated flow field. The adoption of the half-cell configuration allows the negative electrode to be considered as a pseudo-reference electrode with zero potential loss, leading to a reduction in computation time and the number of fitting parameters, which can be determined with reduced uncertainty. The developed model includes a traditional fluid dynamic analysis of the electrolyte in the flow field and in the porous electrode, coupled with the electrochemistry of the reactions involved. In both the experiments and the simulations, the single serpentine distributor exhibits better performance and higher pressure drops compared to those of the interdigitated geometry under all the investigated operating conditions. In the analysis of the local reaction rate, both distributors experienced increased reaction rates under the rib, induced by a by-pass flow between adjacent channels. The reaction rate shows a highly heterogeneous distribution in the serpentine geometry, while it is more uniform in the interdigitated configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
