- home
- Advanced Search
Filters
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:UKRI | STREAMLINEUKRI| STREAMLINELeonardo Verdi; Anna Dalla Marta; Simone Orlandini; Anita Maienza; Silvia Baronti; Francesco Primo Vaccari;handle: 20.500.14243/528382 , 2158/1353491
The contribution of animal waste storage on GHG emissions and climate change is a serious issue for agriculture. The carbon emissions that are generated from barns represent a relevant source of emissions that negatively affect the environmental performance measures of livestock production. In this experiment, CO2 and CH4 emissions from different animal wastes, namely, digestate, slurry, and manure, were evaluated both in their original form and with a biochar addition. The emissions were monitored using the static camber methodology and a portable gas analyzer for a 21-day period. The addition of biochar (at a ratio of 2:1 between the substrates and biochar) significantly reduced the emissions of both gases compared to the untreated substrates. Slurry exhibited higher emissions due to its elevated gas emission tendency. The biochar addition reduced CO2 and CH4 emissions by 26% and 21%, respectively, from the slurry. The main effect of the biochar addition was on the digestate, where the emissions decreased by 45% for CO2 and 78% for CH4. Despite a lower tendency to emit carbon-based gases of manure, biochar addition still caused relevant decreases in CO2 (40%) and CH4 (81%) emissions. Biochar reduced the environmental impacts of all treatments, with a GWP reduction of 55% for the digestate, 22% for the slurry, and 44% for the manure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Preprint 2021Embargo end date: 22 Apr 2022Publisher:Wiley Funded by:EC | PERMTHAW, SNSF | Climate change impacts on..., ARC | Discovery Early Career Re... +27 projectsEC| PERMTHAW ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,FCT| CESAM ,RCN| Effects of herbivory and warming on tundra plant communities ,ANR| ODYSSEE ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,EC| eLTER PLUS ,SNSF| ICOS-CH Phase 2 ,DFG| EarthShape: Earth Surface Shaping by Biota ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSERC ,EC| NICH ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,ANR| ASICS ,EC| SUPER-G ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| ECLAIRE ,EC| AfricanBioServices ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NWO| Specialists at work: how decomposers break down plant litter ,UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,EC| SustainSAHEL ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,ANR| IMPRINT ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| FORMICAWinkler, Manuela; Plichta, Roman; Buysse, Pauline; Lohila, Annalea; Spicher, Fabien; Boeckx, Pascal; Wild, Jan; Feigenwinter, Iris; Olejnik, Janusz; Risch, Anita; Khuroo, Anzar; Lynn, Joshua; di Cella, Umberto; Schmidt, Marius; Urbaniak, Marek; Marchesini, Luca; Govaert, Sanne; Uogintas, Domas; Assis, Rafael; Medinets, Volodymyr; Abdalaze, Otar; Varlagin, Andrej; Dolezal, Jiri; Myers, Jonathan; Randall, Krystal; Bauters, Marijn; Jimenez, Juan; Stoll, Stefan; Petraglia, Alessandro; Mazzolari, Ana; Ogaya, Romà; Tyystjärvi, Vilna; Hammerle, Albin; Wipf, Sonja; Lorite, Juan; Fanin, Nicolas; Benavides, Juan; Scholten, Thomas; Yu, Zicheng; Veen, G.; Treier, Urs; Candan, Onur; Bell, Michael; Hörtnagl, Lukas; Siebicke, Lukas; Vives-Ingla, Maria; Eugster, Werner; Grelle, Achim; Stemkovski, Michael; Theurillat, Jean-Paul; Matula, Radim; Dorrepaal, Ellen; Steinbrecher, Rainer; Alatalo, Juha; Fenu, Giuseppe; Arzac, Alberto; Homeier, Jürgen; Porro, Francesco; Robinson, Sharon; Ghosn, Dany; Haugum, Siri; Ziemblińska, Klaudia; Camargo, José; Zhao, Peng; Niittynen, Pekka; Liljebladh, Bengt; Normand, Signe; Dias, Arildo; Larson, Christian; Peichl, Matthias; Collier, Laura; Myers-Smith, Isla; Zong, Shengwei; Kašpar, Vít; Cooper, Elisabeth; Haider, Sylvia; von Oppen, Jonathan; Cutini, Maurizio; Benito-Alonso, José-Luis; Luoto, Miska; Klemedtsson, Leif; Higgens, Rebecca; Zhang, Jian; Speed, James; Nijs, Ivan; Macek, Martin; Steinwandter, Michael; Poyatos, Rafael; Niedrist, Georg; Curasi, Salvatore; Yang, Yan; Dengler, Jürgen; Géron, Charly; de Pablo, Miguel; Xenakis, Georgios; Kreyling, Juergen; Forte, Tai; Bailey, Joseph; Knohl, Alexander; Goulding, Keith; Wilkinson, Matthew; Kljun, Natascha; Roupsard, Olivier; Stiegler, Christian; Verbruggen, Erik; Wingate, Lisa; Lamprecht, Andrea; Hamid, Maroof; Rossi, Graziano; Descombes, Patrice; Hrbacek, Filip; Bjornsdottir, Katrin; Poulenard, Jérôme; Meeussen, Camille; Guénard, Benoit; Venn, Susanna; Dimarco, Romina; Man, Matěj; Scharnweber, Tobias; Chown, Steven; Pio, Casimiro; Way, Robert; Erickson, Todd; Fernández-Pascual, Eduardo; Pușcaș, Mihai; Orsenigo, Simone; Di Musciano, Michele; Enquist, Brian; Newling, Emily; Tagesson, Torbern; Kemppinen, Julia; Serra-Diaz, Josep; Gottschall, Felix; Schuchardt, Max; Pitacco, Andrea; Jump, Alistair; Exton, Dan; Carnicer, Jofre; Aschero, Valeria; Urban, Anastasiya; Daskalova, Gergana; Santos, Cinthya; Goeckede, Mathias; Bruna, Josef; Andrews, Christopher; Jónsdóttir, Ingibjörg; Casanova-Katny, Angélica; Moriana-Armendariz, Mikel; Ewers, Robert; Pärtel, Meelis; Sagot, Clotilde; Herbst, Mathias; De Frenne, Pieter; Milbau, Ann; Gobin, Anne; Alexander, Jake; Kopecký, Martin; Buchmann, Nina; Kotowska, Martyna; Puchalka, Radoslaw; Penuelas, Josep; Gigauri, Khatuna; Prokushkin, Anatoly; Moiseev, Pavel; Jentsch, Anke; Klisz, Marcin; Barrio, Isabel; Ammann, Christof; Panov, Alexey; Van Geel, Maarten; Finckh, Manfred; Vaccari, Francesco; Erschbamer, Brigitta; Backes, Amanda; Robroek, Bjorn; Campoe, Otávio; Ahmadian, Negar; Boike, Julia; Thomas, Haydn; Pastor, Ada; Smith, Stuart; Pauli, Harald; Kollár, Jozef; de Cássia Guimarães Mesquita, Rita; Michaletz, Sean; Fuentes-Lillo, Eduardo; Urban, Josef; Greenwood, Sarah; Lens, Luc; Van de Vondel, Stijn; Vitale, Luca; Remmele, Sabine; Naujokaitis-Lewis, Ilona; Meusburger, Katrin; Cremonese, Edoardo; Barros, Agustina; Bokhorst, Stef; Svátek, Martin; Allonsius, Camille; Høye, Toke;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: 10651/64961 , 10017/50911 , 10481/73202 , 10261/358672 , 11441/139324 , 10115/29073 , https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 2066/286285 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794
doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: 10651/64961 , 10017/50911 , 10481/73202 , 10261/358672 , 11441/139324 , 10115/29073 , https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 2066/286285 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16060Data sources: Recolector de Ciencia Abierta, RECOLECTAResearch@WURArticle . 2022License: CC BY NCFull-Text: https://edepot.wur.nl/566616Data sources: Research@WURInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentreFondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBCIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreidUS. Depósito de Investigación de la Universidad de Sevilla.Article . 2022License: CC BY NCFull-Text: https://doi.org/10.1111/gcb.16060EcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyReview . 2021Universität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.222 citations 222 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16060Data sources: Recolector de Ciencia Abierta, RECOLECTAResearch@WURArticle . 2022License: CC BY NCFull-Text: https://edepot.wur.nl/566616Data sources: Research@WURInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentreFondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBCIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreidUS. Depósito de Investigación de la Universidad de Sevilla.Article . 2022License: CC BY NCFull-Text: https://doi.org/10.1111/gcb.16060EcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyReview . 2021Universität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Castracani C; Maienza A; Grasso DA; Genesio L; Malcevschi A; Miglietta F; Vaccari FP; Mori A;Biochar incorporation in agricultural soils has been proposed as a climate change mitigation strategy and has proved to substantially increase crop productivity via physical, chemical and biological mechanisms. The changes induced in soil properties are known to have a direct impact on soil ecosystem with consequences for soil biota community that, in turn, can influence biochar aging in soil. Despite several studies investigated in the interplay between biochar and soil microbiology, there is a clear lack of information on groups that live in the most superficial ground layers: soil meso and macro fauna. These groups are of great importance if we consider that biochar application should ideally be located in the soil's surface layer (0-30 cm). Our study is the first attempt to investigate the interactions between biochar soil amendments and aboveground soil macro-meso fauna in a field crop. This was made setting-up a randomized-block experiment on a processing tomato crop in northern Italy, using three different biochar types and periodically monitoring soil parameters and fauna abundances along the crop growing cycle in summer 2013. Results show that the impact of biochar application on soil fauna as a whole is small when compared to that of agricultural management, suggesting that this amendment does not have short-term ecological interferences. Nevertheless, ants exhibited variations in abundances and distribution connected to properties of amended soils such as temperature, pH and humidity, proving that they can be effectively used as a target group in the study of interactions between biochar and soil biota.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Springer Science and Business Media LLC Authors: Ugolini Francesca; Kamalaki Vasileia; Garcia Izquierdo Carlos; Vaccari Francesco Primo; +2 AuthorsUgolini Francesca; Kamalaki Vasileia; Garcia Izquierdo Carlos; Vaccari Francesco Primo; Calzolari Costanza; Ungaro Fabrizio;handle: 20.500.14243/422407
The expansion of biofuels produced from cooking oils and vegetal oils is expected to increase, together with the production of exhausted clay used in the refinery process. Clay produced in the process is considered waste as it is not intended for further applications. This study has assessed a sample of clay produced by a vegetal oil refinery plant and tested it for environmental applications with two types of vegetal species. In the experiment, the oily clay was added to a sandy loam soil in different percentages in order to modify the soil texture and assess the effect on the hydrological and chemical properties. The results demonstrated that on the one hand, oily clay does not change the pH in the soil mixture and it enriches the elemental composition (in terms of Mg, Cu and Zn), but, on the other hand, there are counteracting effects. Even if oily clay did not have toxic effects on seed germination, when applied to the soil, the presence of Ni did affect the plants’ growth. The results thus suggest the need for phytoremediation prior to any application of such clay in soil.
IRIS Cnr arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Frontiers Media SA Beatrice P.; Dalle Fratte M.; Baronti S.; Miali A.; Genesio L.; Vaccari F. P.; Cerabolini B. E. L.; Montagnoli A.;Fibrous and pioneer roots are essential in the uptake and transport of water and nutrients from the soil. Their dynamic may be influenced by the changing of soil physicochemical properties due to the addition of biochar, which, in turn, has been shown to improve plant growth and productivity in the short term. However, the long-term effects of biochar application on root dynamics are still widely unknown. In this study, we aimed to investigate the long-term effects of biochar application on grapevine fibrous and pioneer root dynamics and morphological traits in relation to soil characteristics. To this aim, grapevine plants amended in 2009 and 2010 respectively with one and two doses of biochar, were analyzed in their fibrous and pioneer root production and turnover rate, standing biomass, length, and specific root length, over two growing seasons. Our findings demonstrate that in the long term, biochar application significantly increased soil pH, nutrient availability, and water-holding capacity causing a decrease in the production of fibrous and pioneer roots which is reflected in a reduction of the root web characterized though by a higher turnover rate. Furthermore, we observed that these root morpho-dynamical changes were of higher magnitude in the upper soil layers (0-20 cm) and, at least in the long term, with no significant difference between the two doses. These results suggest that in the long term, biochar can be a powerful tool for improving soil quality, which in turn lowers carbon-cost investment toward the root production and maintenance of a reduced root web that might be directed into grapevine growth and productivity. Such effects shed some light on the root plastic and functional adaptation to modified soil conditions facilitated by the long-term application of biochar, which can be used for implementing adaptive agricultural practices to face the current climate change in a frame of sustainable agricultural policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2017Embargo end date: 01 Jan 2018Publisher:Copernicus GmbH Publicly fundedFunded by:EC | BACI, NSERCEC| BACI ,NSERCJ. von Buttlar; J. von Buttlar; J. Zscheischler; J. Zscheischler; A. Rammig; S. Sippel; S. Sippel; M. Reichstein; M. Reichstein; A. Knohl; M. Jung; O. Menzer; M. A. Arain; N. Buchmann; A. Cescatti; D. Gianelle; G. Kiely; B. E. Law; V. Magliulo; H. Margolis; H. McCaughey; L. Merbold; L. Merbold; M. Migliavacca; L. Montagnani; W. Oechel; W. Oechel; M. Pavelka; M. Peichl; S. Rambal; A. Raschi; R. L. Scott; F. P. Vaccari; E. van Gorsel; A. Varlagin; G. Wohlfahrt; M. D. Mahecha; M. D. Mahecha;Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/bg-15-...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)Universität Innsbruck ForschungsleistungsdokumentationArticle . 2018Data sources: Universität Innsbruck Forschungsleistungsdokumentationhttp://dx.doi.org/10.5194/bg-1...Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 180 citations 180 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/bg-15-...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)Universität Innsbruck ForschungsleistungsdokumentationArticle . 2018Data sources: Universität Innsbruck Forschungsleistungsdokumentationhttp://dx.doi.org/10.5194/bg-1...Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Matteo Lentini; Michele Ciriello; Youssef Rouphael; Emanuela Campana; Francesco Primo Vaccari; Stefania De Pascale;handle: 11588/995095
Biochar, an important by-product of the waste biomass pyrolysis process, shows great potential to reduce the environmental impact of and address the serious problems related to climate change as well as to define an efficient circular economy model. Its use as a soil conditioner has increased the interest in biochar in agriculture over time. This review investigates how critical aspects such as starting material, temperature, and the presence or absence of oxygen during the pyrolysis process influence the yield and quality of this valuable soil conditioner. Considering the horticultural sector, this review also provides a comprehensive and detailed overview of how biochar positively influences growth, development, and yield by explaining the mechanisms and modes of action under both optimal growth conditions and unfavorable contexts (salt and water stress and the presence of heavy metals). The main mechanisms highlighted by this literature review are improvement in soil aeration and water-holding capacity, microbial activity, and nutritional status of soil and plants, as well as alterations in some important soil chemical properties. This in-depth review of the literature highlights how the interaction between biochar types, dose, crop species, and growing conditions (optimal or nonoptimal) result in nonunique responses. The heterogeneity of the results reported in the literature confirms how many of the topics discussed deserve further investigation, with particular attention to identifying the right dose of biochar in relation to the different preharvest factors considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:Springer Science and Business Media LLC Baronti S.; Ungaro F.; Maienza A.; Ugolini F.; Lagomarsino A.; Agnelli A. E.; Calzolari C.; Pisseri F.; Robbiati G.; Vaccari F. P.;handle: 20.500.14243/532664
AbstractOver the past 30 years, farming in the Alpine region has undergone important changes: the average number of animals per farm and the use of external inputs have increased while the diversity of farming practices has decreased, becoming similar to intensive farming. This change has led to a reduction in the supply of agroecosystem services and the sustainability of the mountain livestock sector. In this study, we investigated rotational grazing as alternative to continuous grazing to improve the sustainability of mountain farming practices. Greenhouse gas (GHG) emissions such as carbon dioxide, methane and nitrous oxide were measured together with soil properties (bulk density, saturated hydraulic conductivity, organic carbon content and plant biomass) for two grazing seasons using static chambers. The results showed that rotational grazing had a positive impact on plant biomass: minimize soil disturbance, reduce compaction and GHG emissions of the soil and increase water infiltration. Therefore, this practice has revealed clear benefits in terms of soil protection and climate change mitigation and adaptation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:Elsevier BV Funded by:EC | ENERGYPOPLAREC| ENERGYPOPLARP J Tricker; M Pecchiari; S M Bunn; F P Vaccari; A Peressotti; F Miglietta; G Taylor;handle: 20.500.14243/158736 , 11390/694291
Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), form following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conduc- tance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.
Archivio istituziona... arrow_drop_down University of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Baronti S.; Galassi E.; Ugolini F.; Miglietta F.; Genesio L.; Vaccari F. P.; Cacciatori P.; Gazza L.;handle: 20.500.14243/532655
Perennial crops are emerging as an effective strategy for adapting to climate change, but also for mitigating net greenhouse gas emissions from agriculture. This study aims to investigate the agronomic and physiological performance of selected perennial wheat genotypes derived from crosses between Triticum aestivum L. and Thinopyrum spp to evaluate if they could give a contribute both to face climate changes and to restore soil health. Four perennial wheat genotypes were grown in Central Italy and compared in terms of agronomic traits, root development (biomass and length) and ecophysiological parameters with an annual common wheat cultivar. Plants were, on average, taller in perennial wheat genotypes than in annual wheat as well as the number of tillers per plant (+ 49%), root length (+ 43%) and root biomass (+ 31%) in both years, whereas, perennial wheat kernels were smaller (− 15%). Post harvest regrowth occurred in different amounts in all perennial wheat genotypes. In terms of the ecophysiological response, perennial wheat lines revealed higher soil respiration and lower stomatal conductance than annual wheat. On the contrary, transpiration rate, water use efficiency and photosynthesis were higher in annual genotype than in perennial ones. The environmental benefits of adopting perennial grains are discussed together with suggestions on optimal field management and future breeding strategies.
IRIS Cnr arrow_drop_down Genetic Resources and Crop EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Genetic Resources and Crop EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:UKRI | STREAMLINEUKRI| STREAMLINELeonardo Verdi; Anna Dalla Marta; Simone Orlandini; Anita Maienza; Silvia Baronti; Francesco Primo Vaccari;handle: 20.500.14243/528382 , 2158/1353491
The contribution of animal waste storage on GHG emissions and climate change is a serious issue for agriculture. The carbon emissions that are generated from barns represent a relevant source of emissions that negatively affect the environmental performance measures of livestock production. In this experiment, CO2 and CH4 emissions from different animal wastes, namely, digestate, slurry, and manure, were evaluated both in their original form and with a biochar addition. The emissions were monitored using the static camber methodology and a portable gas analyzer for a 21-day period. The addition of biochar (at a ratio of 2:1 between the substrates and biochar) significantly reduced the emissions of both gases compared to the untreated substrates. Slurry exhibited higher emissions due to its elevated gas emission tendency. The biochar addition reduced CO2 and CH4 emissions by 26% and 21%, respectively, from the slurry. The main effect of the biochar addition was on the digestate, where the emissions decreased by 45% for CO2 and 78% for CH4. Despite a lower tendency to emit carbon-based gases of manure, biochar addition still caused relevant decreases in CO2 (40%) and CH4 (81%) emissions. Biochar reduced the environmental impacts of all treatments, with a GWP reduction of 55% for the digestate, 22% for the slurry, and 44% for the manure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Preprint 2021Embargo end date: 22 Apr 2022Publisher:Wiley Funded by:EC | PERMTHAW, SNSF | Climate change impacts on..., ARC | Discovery Early Career Re... +27 projectsEC| PERMTHAW ,SNSF| Climate change impacts on biodiversity: From macro- to microclimate ,ARC| Discovery Early Career Researcher Award - Grant ID: DE180100570 ,FCT| CESAM ,RCN| Effects of herbivory and warming on tundra plant communities ,ANR| ODYSSEE ,ARC| Discovery Early Career Researcher Award - Grant ID: DE140101611 ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE) ,EC| eLTER PLUS ,SNSF| ICOS-CH Phase 2 ,DFG| EarthShape: Earth Surface Shaping by Biota ,AKA| Atmosphere and Climate Competence Center (ACCC) ,NSERC ,EC| NICH ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,ANR| ASICS ,EC| SUPER-G ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| ECLAIRE ,EC| AfricanBioServices ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with data ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,NWO| Specialists at work: how decomposers break down plant litter ,UKRI| SCORE: Supply Chain Optimisation for demand Response Efficiency ,RCN| The effect of snow depth and snow melt timing on arctic terrestrial ecosystems. ,EC| SustainSAHEL ,RCN| The role of Functional group interactions in mediating climate change impacts on the Carbon dynamics and Biodiversity of alpine ecosystems ,ANR| IMPRINT ,NSF| Integrating species traits into species pools: A multi-scale approach to understanding community assembly ,EC| FORMICAWinkler, Manuela; Plichta, Roman; Buysse, Pauline; Lohila, Annalea; Spicher, Fabien; Boeckx, Pascal; Wild, Jan; Feigenwinter, Iris; Olejnik, Janusz; Risch, Anita; Khuroo, Anzar; Lynn, Joshua; di Cella, Umberto; Schmidt, Marius; Urbaniak, Marek; Marchesini, Luca; Govaert, Sanne; Uogintas, Domas; Assis, Rafael; Medinets, Volodymyr; Abdalaze, Otar; Varlagin, Andrej; Dolezal, Jiri; Myers, Jonathan; Randall, Krystal; Bauters, Marijn; Jimenez, Juan; Stoll, Stefan; Petraglia, Alessandro; Mazzolari, Ana; Ogaya, Romà; Tyystjärvi, Vilna; Hammerle, Albin; Wipf, Sonja; Lorite, Juan; Fanin, Nicolas; Benavides, Juan; Scholten, Thomas; Yu, Zicheng; Veen, G.; Treier, Urs; Candan, Onur; Bell, Michael; Hörtnagl, Lukas; Siebicke, Lukas; Vives-Ingla, Maria; Eugster, Werner; Grelle, Achim; Stemkovski, Michael; Theurillat, Jean-Paul; Matula, Radim; Dorrepaal, Ellen; Steinbrecher, Rainer; Alatalo, Juha; Fenu, Giuseppe; Arzac, Alberto; Homeier, Jürgen; Porro, Francesco; Robinson, Sharon; Ghosn, Dany; Haugum, Siri; Ziemblińska, Klaudia; Camargo, José; Zhao, Peng; Niittynen, Pekka; Liljebladh, Bengt; Normand, Signe; Dias, Arildo; Larson, Christian; Peichl, Matthias; Collier, Laura; Myers-Smith, Isla; Zong, Shengwei; Kašpar, Vít; Cooper, Elisabeth; Haider, Sylvia; von Oppen, Jonathan; Cutini, Maurizio; Benito-Alonso, José-Luis; Luoto, Miska; Klemedtsson, Leif; Higgens, Rebecca; Zhang, Jian; Speed, James; Nijs, Ivan; Macek, Martin; Steinwandter, Michael; Poyatos, Rafael; Niedrist, Georg; Curasi, Salvatore; Yang, Yan; Dengler, Jürgen; Géron, Charly; de Pablo, Miguel; Xenakis, Georgios; Kreyling, Juergen; Forte, Tai; Bailey, Joseph; Knohl, Alexander; Goulding, Keith; Wilkinson, Matthew; Kljun, Natascha; Roupsard, Olivier; Stiegler, Christian; Verbruggen, Erik; Wingate, Lisa; Lamprecht, Andrea; Hamid, Maroof; Rossi, Graziano; Descombes, Patrice; Hrbacek, Filip; Bjornsdottir, Katrin; Poulenard, Jérôme; Meeussen, Camille; Guénard, Benoit; Venn, Susanna; Dimarco, Romina; Man, Matěj; Scharnweber, Tobias; Chown, Steven; Pio, Casimiro; Way, Robert; Erickson, Todd; Fernández-Pascual, Eduardo; Pușcaș, Mihai; Orsenigo, Simone; Di Musciano, Michele; Enquist, Brian; Newling, Emily; Tagesson, Torbern; Kemppinen, Julia; Serra-Diaz, Josep; Gottschall, Felix; Schuchardt, Max; Pitacco, Andrea; Jump, Alistair; Exton, Dan; Carnicer, Jofre; Aschero, Valeria; Urban, Anastasiya; Daskalova, Gergana; Santos, Cinthya; Goeckede, Mathias; Bruna, Josef; Andrews, Christopher; Jónsdóttir, Ingibjörg; Casanova-Katny, Angélica; Moriana-Armendariz, Mikel; Ewers, Robert; Pärtel, Meelis; Sagot, Clotilde; Herbst, Mathias; De Frenne, Pieter; Milbau, Ann; Gobin, Anne; Alexander, Jake; Kopecký, Martin; Buchmann, Nina; Kotowska, Martyna; Puchalka, Radoslaw; Penuelas, Josep; Gigauri, Khatuna; Prokushkin, Anatoly; Moiseev, Pavel; Jentsch, Anke; Klisz, Marcin; Barrio, Isabel; Ammann, Christof; Panov, Alexey; Van Geel, Maarten; Finckh, Manfred; Vaccari, Francesco; Erschbamer, Brigitta; Backes, Amanda; Robroek, Bjorn; Campoe, Otávio; Ahmadian, Negar; Boike, Julia; Thomas, Haydn; Pastor, Ada; Smith, Stuart; Pauli, Harald; Kollár, Jozef; de Cássia Guimarães Mesquita, Rita; Michaletz, Sean; Fuentes-Lillo, Eduardo; Urban, Josef; Greenwood, Sarah; Lens, Luc; Van de Vondel, Stijn; Vitale, Luca; Remmele, Sabine; Naujokaitis-Lewis, Ilona; Meusburger, Katrin; Cremonese, Edoardo; Barros, Agustina; Bokhorst, Stef; Svátek, Martin; Allonsius, Camille; Høye, Toke;doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: 10651/64961 , 10017/50911 , 10481/73202 , 10261/358672 , 11441/139324 , 10115/29073 , https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 2066/286285 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794
doi: 10.1111/gcb.16060 , 10.32942/osf.io/pksqw , 10.5445/ir/1000143688 , 10.21256/zhaw-24832 , 10.17863/cam.81331
pmid: 34967074
pmc: PMC9303923
handle: 10651/64961 , 10017/50911 , 10481/73202 , 10261/358672 , 11441/139324 , 10115/29073 , https://repository.ubn.ru.nl/handle/2066/286285 , 1871.1/b0fc7fdf-22e3-45ef-8d70-30d75b7f5fba , 20.500.11755/f67625de-3e1f-4112-899d-3dae951cfbfc , 11250/2986065 , 11250/2983746 , 10852/91639 , 10037/24329 , 10037/28344 , 20.500.14243/445619 , 2066/286285 , 10576/30034 , 11250/2979811 , 10067/1859610151162165141 , 1983/7aa6df09-efc2-4f70-8bec-268ab675f242 , 11590/476830 , 10449/74200 , 11584/332967 , 11695/119970 , 11697/178559 , 1854/LU-8743335 , 11381/2931752 , 11571/1450206 , 10044/1/107406 , 1893/33794
AbstractResearch in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1‐km2resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km2pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse‐grained air temperature estimates from ERA5‐Land (an atmospheric reanalysis by the European Centre for Medium‐Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome‐specific offsets emphasize that the projected impacts of climate and climate change on near‐surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil‐related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16060Data sources: Recolector de Ciencia Abierta, RECOLECTAResearch@WURArticle . 2022License: CC BY NCFull-Text: https://edepot.wur.nl/566616Data sources: Research@WURInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentreFondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBCIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreidUS. Depósito de Investigación de la Universidad de Sevilla.Article . 2022License: CC BY NCFull-Text: https://doi.org/10.1111/gcb.16060EcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyReview . 2021Universität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.222 citations 222 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Full-Text: https://doi.org/10.1111/gcb.16060Data sources: Recolector de Ciencia Abierta, RECOLECTAResearch@WURArticle . 2022License: CC BY NCFull-Text: https://edepot.wur.nl/566616Data sources: Research@WURInstitutional Repository of Nature Research CentreArticle . 2022License: CC BYData sources: Institutional Repository of Nature Research CentreFondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/74200Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2022Full-Text: https://hdl.handle.net/11381/2931752Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2022License: CC BY NCFull-Text: http://hdl.handle.net/10852/91639Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BY NCFull-Text: https://hdl.handle.net/11250/2983746Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/244912Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository of University of Zaragoza (ZAGUAN)Article . 2022License: CC BY NCFull-Text: http://zaguan.unizar.es/record/125734Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/6hg3313zData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/107406Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BY NCFull-Text: http://hdl.handle.net/1893/33794Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.32942/osf.i...Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2021License: CC BY NCData sources: Spiral - Imperial College Digital RepositoryDigital Repository of University of ZaragozaArticle . 2022License: CC BY NCData sources: Digital Repository of University of ZaragozaRepositorio Institucional Universidad de GranadaArticle . 2022License: CC BY NCData sources: Repositorio Institucional Universidad de GranadaQatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryPublikationenserver der Georg-August-Universität GöttingenArticle . 2022Serveur académique lausannoisArticle . 2022License: CC BY NCData sources: Serveur académique lausannoisInstitutional Repository Universiteit AntwerpenArticle . 2022Data sources: Institutional Repository Universiteit AntwerpenUniversity of Oulu Repository - JultikaArticle . 2022Data sources: University of Oulu Repository - JultikaRepositorio Institucional de la Universidad de OviedoArticle . 2022License: CC BY NCData sources: Repositorio Institucional de la Universidad de OviedoCopenhagen University Research Information SystemArticle . 2022Data sources: Copenhagen University Research Information SystemThe University of Manchester - Institutional RepositoryArticle . 2022Data sources: The University of Manchester - Institutional RepositoryGöttingen Research Online PublicationsArticle . 2022Data sources: Göttingen Research Online PublicationsPublikationer från Stockholms universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Stockholms universitetPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universiteteScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic BibliographyDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research ArchiveBiblioteca Digital de la Universidad de AlcaláArticle . 2021License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedData sources: Bergen Open Research Archive - UiBCIRAD: HAL (Agricultural Research for Development)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Archive Ouverte de l'Université Rennes (HAL)Article . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2022Data sources: Archivio della Ricerca - Università degli Studi Roma TreidUS. Depósito de Investigación de la Universidad de Sevilla.Article . 2022License: CC BY NCFull-Text: https://doi.org/10.1111/gcb.16060EcoEvoRxiv PreprintsPreprint . 2021Full-Text: https://ecoevorxiv.org/pksqw/downloadData sources: EcoEvoRxiv PreprintsRecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BY NCData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyReview . 2021Universität Innsbruck ForschungsleistungsdokumentationArticle . 2022Data sources: Universität Innsbruck ForschungsleistungsdokumentationMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Munin - Open Research ArchiveQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Castracani C; Maienza A; Grasso DA; Genesio L; Malcevschi A; Miglietta F; Vaccari FP; Mori A;Biochar incorporation in agricultural soils has been proposed as a climate change mitigation strategy and has proved to substantially increase crop productivity via physical, chemical and biological mechanisms. The changes induced in soil properties are known to have a direct impact on soil ecosystem with consequences for soil biota community that, in turn, can influence biochar aging in soil. Despite several studies investigated in the interplay between biochar and soil microbiology, there is a clear lack of information on groups that live in the most superficial ground layers: soil meso and macro fauna. These groups are of great importance if we consider that biochar application should ideally be located in the soil's surface layer (0-30 cm). Our study is the first attempt to investigate the interactions between biochar soil amendments and aboveground soil macro-meso fauna in a field crop. This was made setting-up a randomized-block experiment on a processing tomato crop in northern Italy, using three different biochar types and periodically monitoring soil parameters and fauna abundances along the crop growing cycle in summer 2013. Results show that the impact of biochar application on soil fauna as a whole is small when compared to that of agricultural management, suggesting that this amendment does not have short-term ecological interferences. Nevertheless, ants exhibited variations in abundances and distribution connected to properties of amended soils such as temperature, pH and humidity, proving that they can be effectively used as a target group in the study of interactions between biochar and soil biota.
CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down The Science of The Total EnvironmentArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Springer Science and Business Media LLC Authors: Ugolini Francesca; Kamalaki Vasileia; Garcia Izquierdo Carlos; Vaccari Francesco Primo; +2 AuthorsUgolini Francesca; Kamalaki Vasileia; Garcia Izquierdo Carlos; Vaccari Francesco Primo; Calzolari Costanza; Ungaro Fabrizio;handle: 20.500.14243/422407
The expansion of biofuels produced from cooking oils and vegetal oils is expected to increase, together with the production of exhausted clay used in the refinery process. Clay produced in the process is considered waste as it is not intended for further applications. This study has assessed a sample of clay produced by a vegetal oil refinery plant and tested it for environmental applications with two types of vegetal species. In the experiment, the oily clay was added to a sandy loam soil in different percentages in order to modify the soil texture and assess the effect on the hydrological and chemical properties. The results demonstrated that on the one hand, oily clay does not change the pH in the soil mixture and it enriches the elemental composition (in terms of Mg, Cu and Zn), but, on the other hand, there are counteracting effects. Even if oily clay did not have toxic effects on seed germination, when applied to the soil, the presence of Ni did affect the plants’ growth. The results thus suggest the need for phytoremediation prior to any application of such clay in soil.
IRIS Cnr arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Frontiers Media SA Beatrice P.; Dalle Fratte M.; Baronti S.; Miali A.; Genesio L.; Vaccari F. P.; Cerabolini B. E. L.; Montagnoli A.;Fibrous and pioneer roots are essential in the uptake and transport of water and nutrients from the soil. Their dynamic may be influenced by the changing of soil physicochemical properties due to the addition of biochar, which, in turn, has been shown to improve plant growth and productivity in the short term. However, the long-term effects of biochar application on root dynamics are still widely unknown. In this study, we aimed to investigate the long-term effects of biochar application on grapevine fibrous and pioneer root dynamics and morphological traits in relation to soil characteristics. To this aim, grapevine plants amended in 2009 and 2010 respectively with one and two doses of biochar, were analyzed in their fibrous and pioneer root production and turnover rate, standing biomass, length, and specific root length, over two growing seasons. Our findings demonstrate that in the long term, biochar application significantly increased soil pH, nutrient availability, and water-holding capacity causing a decrease in the production of fibrous and pioneer roots which is reflected in a reduction of the root web characterized though by a higher turnover rate. Furthermore, we observed that these root morpho-dynamical changes were of higher magnitude in the upper soil layers (0-20 cm) and, at least in the long term, with no significant difference between the two doses. These results suggest that in the long term, biochar can be a powerful tool for improving soil quality, which in turn lowers carbon-cost investment toward the root production and maintenance of a reduced root web that might be directed into grapevine growth and productivity. Such effects shed some light on the root plastic and functional adaptation to modified soil conditions facilitated by the long-term application of biochar, which can be used for implementing adaptive agricultural practices to face the current climate change in a frame of sustainable agricultural policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2017Embargo end date: 01 Jan 2018Publisher:Copernicus GmbH Publicly fundedFunded by:EC | BACI, NSERCEC| BACI ,NSERCJ. von Buttlar; J. von Buttlar; J. Zscheischler; J. Zscheischler; A. Rammig; S. Sippel; S. Sippel; M. Reichstein; M. Reichstein; A. Knohl; M. Jung; O. Menzer; M. A. Arain; N. Buchmann; A. Cescatti; D. Gianelle; G. Kiely; B. E. Law; V. Magliulo; H. Margolis; H. McCaughey; L. Merbold; L. Merbold; M. Migliavacca; L. Montagnani; W. Oechel; W. Oechel; M. Pavelka; M. Peichl; S. Rambal; A. Raschi; R. L. Scott; F. P. Vaccari; E. van Gorsel; A. Varlagin; G. Wohlfahrt; M. D. Mahecha; M. D. Mahecha;Abstract. Extreme climatic events, such as droughts and heat stress induce anomalies in ecosystem-atmosphere CO2 fluxes, such as gross primary production (GPP) and ecosystem respiration (Reco), and, hence, can change the net ecosystem carbon balance. However, despite our increasing understanding of the underlying mechanisms, the magnitudes of the impacts of different types of extremes on GPP and Reco within and between ecosystems remain poorly predicted. Here we aim to identify the major factors controlling the amplitude of extreme event impacts on GPP, Reco, and the resulting net ecosystem production (NEP). We focus on the impacts of heat and drought and their combination. We identified hydrometeorological extreme events in consistently downscaled water availability and temperature measurements over a 30 year time period. We then used FLUXNET eddy-covariance flux measurements to estimate the CO2 flux anomalies during these extreme events across dominant vegetation types and climate zones. Overall, our results indicate that short-term heat extremes increased respiration more strongly than they down-regulated GPP, resulting in a moderate reduction of the ecosystem’s carbon sink potential. In the absence of heat stress, droughts tended to have smaller and similarly dampening effects on both GPP and Reco, and, hence, often resulted in neutral NEP responses. The combination of drought and heat typically led to a strong decrease in GPP, whereas heat and drought impacts on respiration partially offset each other. Taken together, compound heat and drought events led to the strongest C sink reduction compared to any single-factor extreme. A key insight of this paper, however, is that duration matters most: for heat stress during droughts, the magnitude of impacts systematically increased with duration, whereas under heat stress without drought, the response of Reco over time turned from an initial increase to a down-regulation after about two weeks. This confirms earlier theories that not only the magnitude but also the duration of an extreme event determines its impact. Our study corroborates the results of several local site-level case studies, but as a novelty generalizes these findings at the global scale. Specifically, we find that the different response functions of the two antipodal land-atmosphere fluxes GPP and Reco can also result in increasing NEP during certain extreme conditions. Apparently counterintuitive findings of this kind bear great potential for scrutinizing the mechanisms implemented in state-of-the-art terrestrial biosphere models and provide a benchmark for future model development and testing.
IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/bg-15-...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)Universität Innsbruck ForschungsleistungsdokumentationArticle . 2018Data sources: Universität Innsbruck Forschungsleistungsdokumentationhttp://dx.doi.org/10.5194/bg-1...Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 180 citations 180 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/92063Data sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2018Full-Text: http://hdl.handle.net/10449/46682Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/bg-201...Article . 2017 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.5194/bg-15-...Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefPublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsCork Open Research Archive (CORA)Article . 2018License: CC BYFull-Text: https://www.biogeosciences.net/15/1293/2018/Data sources: Cork Open Research Archive (CORA)Universität Innsbruck ForschungsleistungsdokumentationArticle . 2018Data sources: Universität Innsbruck Forschungsleistungsdokumentationhttp://dx.doi.org/10.5194/bg-1...Article . 2018 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Matteo Lentini; Michele Ciriello; Youssef Rouphael; Emanuela Campana; Francesco Primo Vaccari; Stefania De Pascale;handle: 11588/995095
Biochar, an important by-product of the waste biomass pyrolysis process, shows great potential to reduce the environmental impact of and address the serious problems related to climate change as well as to define an efficient circular economy model. Its use as a soil conditioner has increased the interest in biochar in agriculture over time. This review investigates how critical aspects such as starting material, temperature, and the presence or absence of oxygen during the pyrolysis process influence the yield and quality of this valuable soil conditioner. Considering the horticultural sector, this review also provides a comprehensive and detailed overview of how biochar positively influences growth, development, and yield by explaining the mechanisms and modes of action under both optimal growth conditions and unfavorable contexts (salt and water stress and the presence of heavy metals). The main mechanisms highlighted by this literature review are improvement in soil aeration and water-holding capacity, microbial activity, and nutritional status of soil and plants, as well as alterations in some important soil chemical properties. This in-depth review of the literature highlights how the interaction between biochar types, dose, crop species, and growing conditions (optimal or nonoptimal) result in nonunique responses. The heterogeneity of the results reported in the literature confirms how many of the topics discussed deserve further investigation, with particular attention to identifying the right dose of biochar in relation to the different preharvest factors considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object 2022Publisher:Springer Science and Business Media LLC Baronti S.; Ungaro F.; Maienza A.; Ugolini F.; Lagomarsino A.; Agnelli A. E.; Calzolari C.; Pisseri F.; Robbiati G.; Vaccari F. P.;handle: 20.500.14243/532664
AbstractOver the past 30 years, farming in the Alpine region has undergone important changes: the average number of animals per farm and the use of external inputs have increased while the diversity of farming practices has decreased, becoming similar to intensive farming. This change has led to a reduction in the supply of agroecosystem services and the sustainability of the mountain livestock sector. In this study, we investigated rotational grazing as alternative to continuous grazing to improve the sustainability of mountain farming practices. Greenhouse gas (GHG) emissions such as carbon dioxide, methane and nitrous oxide were measured together with soil properties (bulk density, saturated hydraulic conductivity, organic carbon content and plant biomass) for two grazing seasons using static chambers. The results showed that rotational grazing had a positive impact on plant biomass: minimize soil disturbance, reduce compaction and GHG emissions of the soil and increase water infiltration. Therefore, this practice has revealed clear benefits in terms of soil protection and climate change mitigation and adaptation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2009Publisher:Elsevier BV Funded by:EC | ENERGYPOPLAREC| ENERGYPOPLARP J Tricker; M Pecchiari; S M Bunn; F P Vaccari; A Peressotti; F Miglietta; G Taylor;handle: 20.500.14243/158736 , 11390/694291
Fast-growing poplar trees may in future be used as a source of renewable energy for heat, electricity and biofuels such as bioethanol. Water use in Populus x euramericana (clone I214), form following long-term exposure to elevated CO2 in the POPFACE (poplar free-air carbon dioxide enrichment) experiment, is quantified here. Stomatal conductance was measured and, during two measurement campaigns made before and after coppicing, whole-tree water use was determined using heat-balance sap-flow gauges, first validated using eddy covariance measurements of latent heat flux. Water use was determined by the balance between leaf-level reductions in stomatal conductance and tree-level stimulations in transpiration. Reductions in stomatal conduc- tance were found that varied between 16 and 39% relative to ambient air. Whole-tree sap flow was increased in plants growing under elevated CO2, on average, by 12 and 23%, respectively, in the first and in the second measurement campaigns. These results suggest that future CO2 concentrations may result in an increase in seasonal water use in fast-growing, short-rotation Populus plantations.
Archivio istituziona... arrow_drop_down University of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down University of Southampton: e-Prints SotonArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Baronti S.; Galassi E.; Ugolini F.; Miglietta F.; Genesio L.; Vaccari F. P.; Cacciatori P.; Gazza L.;handle: 20.500.14243/532655
Perennial crops are emerging as an effective strategy for adapting to climate change, but also for mitigating net greenhouse gas emissions from agriculture. This study aims to investigate the agronomic and physiological performance of selected perennial wheat genotypes derived from crosses between Triticum aestivum L. and Thinopyrum spp to evaluate if they could give a contribute both to face climate changes and to restore soil health. Four perennial wheat genotypes were grown in Central Italy and compared in terms of agronomic traits, root development (biomass and length) and ecophysiological parameters with an annual common wheat cultivar. Plants were, on average, taller in perennial wheat genotypes than in annual wheat as well as the number of tillers per plant (+ 49%), root length (+ 43%) and root biomass (+ 31%) in both years, whereas, perennial wheat kernels were smaller (− 15%). Post harvest regrowth occurred in different amounts in all perennial wheat genotypes. In terms of the ecophysiological response, perennial wheat lines revealed higher soil respiration and lower stomatal conductance than annual wheat. On the contrary, transpiration rate, water use efficiency and photosynthesis were higher in annual genotype than in perennial ones. The environmental benefits of adopting perennial grains are discussed together with suggestions on optimal field management and future breeding strategies.
IRIS Cnr arrow_drop_down Genetic Resources and Crop EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Genetic Resources and Crop EvolutionArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
