- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Jing, Y; Armstrong, RT; Lamei Ramandi, H; Mostaghimi, P;handle: 1959.4/unsworks_42430
Abstract Coal seam gas (CSG) is gaining global interests due to its natural abundance and environmental benefits in comparison to more traditional energy sources. However, due to its significant heterogeneity and complex porous structure, it is challenging to characterise and thus predict petrophysical properties. Moreover, the fracture network of coal poses a major challenge for direct numerical simulations on segmented images collected from X-ray micro-computed tomography (μCT). The segmentation of coal images is problematic and often results in misclassification of coal features that subsequently causes numerical instabilities. This paper aims to develop an advanced image analysis method and a novel discrete fracture network model to circumvent these issues. Coal μCT data are utilised for the acquisition of structural parameters and then discrete fracture networks are built to reconstruct representative coal images. The modelling method mimics the cleat formation process and reproduces particular cleat network patterns. The reconstructed network preserves the key attributes of coal, i.e. connectivity and cleat structure, while not being limited in terms of size and/or resolution. Furthermore, direct numerical simulations based on lattice Boltzmann method are performed on the cleat network realisations to evaluate coal permeability. We find that directional permeabilities result in different system scaling effects because of the dependence on the underlying structure of the cleat network. The developed method facilitates the evaluation of the relationship between coal cleat structure and resulting flow properties, which are steps forward in the evaluation of coal petrophysical properties at the core scale.
UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV J. William Carey; Dorthe Wildenschild; Ryan T. Armstrong; A. L. Herring; Iain M. Young;AbstractWe present experimental results based on computed x-ray microtomography (CMT) for quantifying capillary trapping mechanisms as a function of fluid properties using several pairs of analog fluids to span a range of potential supercritical CO2-brine conditions. Our experiments areconducted in a core-flood apparatus using synthetic porous media and we investigate capillary trapping by measuring trapped non-wetting phase area as a function of varying interfacial tension, viscosity, and fluid flow rate. Experiments are repeated for a single sintered glass bead core using three different non-wetting phase fluids, and varying concentrations of surfactants, to explore and separate the effects of interfacial tension, viscosity, and fluid flow rate. Analysis of the data demonstrates distinct and consistent differences in the amount of initial (i.e. following CO2 injection) and residual (i.e. following flood or WAG scheme) non-wetting phase occupancy as a function of fluid properties and flow rate. Further experimentation and analysis is needed, but these preliminary results indicate trends that can guide design of injection scenarios such that both initial and residual trapped gas occupancy is optimized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Industrial Transformation..., ARC | Linkage Projects - Grant ..., ARC | Future Fellowships - Gran...ARC| Industrial Transformation Training Centres - Grant ID: IC200100023 ,ARC| Linkage Projects - Grant ID: LP200100255 ,ARC| Future Fellowships - Grant ID: FT170100224Ying Da Wang; Quentin Meyer; Kunning Tang; James E. McClure; Robin T. White; Stephen T. Kelly; Matthew M. Crawford; Francesco Iacoviello; Dan J. L. Brett; Paul R. Shearing; Peyman Mostaghimi; Chuan Zhao; Ryan T. Armstrong;AbstractProton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity and water, suffer acute liquid water challenges. Accurate liquid water modelling is inherently challenging due to the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging and modelling capabilities are limiting simulations to small areas (<1 mm2) or simplified architectures. Herein, an advancement in water modelling is achieved using X-ray micro-computed tomography, deep learned super-resolution, multi-label segmentation, and direct multi-phase simulation. The resulting image is the most resolved domain (16 mm2with 700 nm voxel resolution) and the largest direct multi-phase flow simulation of a fuel cell. This generalisable approach unveils multi-scale water clustering and transport mechanisms over large dry and flooded areas in the gas diffusion layer and flow fields, paving the way for next generation proton exchange membrane fuel cells with optimised structures and wettabilities.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-35973-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-35973-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Jing, Y; Armstrong, RT; Mostaghimi, P;handle: 1959.4/unsworks_64917
Abstract In coal seam gas (CSG) reservoirs, the underlying fracture networks play a critical role in controlling flow pathways of methane and water phases. Thus, study of flow in fracture networks via different numerical modelling methods is of importance. Compared to direct flow simulation, the Fracture Pipe Network Model (FPNM) is an effective means of modelling fluid flow in a fracture network due to its computational efficiency. However, constructing FPNM for authentic samples is challenging due to the limited fracture data at the core scale. In addition, application of FPNM for coal is challenging due to its complex internal fracture network. With X-ray micro-computed tomography (micro-CT) imaging, internal fracture network of coal samples can be visualised non-destructively, providing deterministic input data for FPNM. However, analysing fractures individually and characterising network connectivity based on micro-CT images are difficult, due to complex interactions, irregular fracture geometry, resolution limitation and image noises. In this paper, we develop a framework for constructing image-based FPNM for real fractured coal cores for fast prediction of permeability. Compared with conventional FPNM, each pipe element of our improved FPNM has the identical properties (orientations, length, aperture and roughness) with its corresponding data from the real sample. By comparing permeability values obtained from FPNMs, micro-CT images and voxelised DFNs, we conclude that FPNM can effectively estimate the permeability of original fracture networks while requiring significantly lower computational cost that make it a suitable framework for expensive multi-phase multiphysics flow simulations.
UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_64917Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_64917Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE180100082Authors: A.L. Herring; C. Sun; R.T. Armstrong; M. Saadatfar;International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Elizabeth J.H. Kimbrel; Dorthe Wildenschild; Anna L. Herring; Ryan T. Armstrong;International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Ryan T. Armstrong; Brian K. Bay; Dorthe Wildenschild; Ivan Lunati; A. L. Herring; Elizabeth Harper Kimbrel;Abstract Geological carbon sequestration is being considered worldwide as a means of mitigating anthropogenic emission of greenhouse gases. During sequestration, carbon dioxide (CO 2 ) gas effluent is captured from coal-fired power plants or other concentrated emission sources and injected into saline aquifers or depleted oil reservoirs for long term storage. In an effort to fully understand and optimize CO 2 trapping efficiency, the capillary mechanisms that immobilize subsurface CO 2 were analyzed at the pore-scale. Pairs of proxy fluids representing the potential range of in-situ conditions of supercritical CO 2 (nonwetting fluid) and brine (wetting fluid) were used during experimentation. The two fluids were imbibed and drained from a flow cell apparatus containing a sintered glass bead core. Fluid parameters (such as interfacial tension and fluid viscosities) and flow rate were altered to characterize their relative impact on capillary trapping. Computed x-ray microtomography (microCT) was used to quantify immobilized nonwetting fluid volumes after imbibition and drainage events. MicroCT-analyzed data suggests that capillary trapping in sintered glass bead (a mildly consolidated porous medium) is dictated by the capillary number ( Ca ), the viscosity ratio ( M ), and the Bond number ( Bo ) of the system, reflecting that all three viscous, capillary, and gravity forces affect the displacement process to varying degree as their relative importance changes. The amount of residual trapped nonwetting phase was observed to increase with increasing nonwetting fluid viscosity, and with decreasing density difference of the fluids; this suggests that CO 2 sequestration can potentially be engineered for optimal trapping through alterations to the viscosity or density of supercritical CO 2 .
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticleLicense: Elsevier Non-CommercialData sources: UnpayWallInternational Journal of Greenhouse Gas ControlArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticleLicense: Elsevier Non-CommercialData sources: UnpayWallInternational Journal of Greenhouse Gas ControlArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170104417Meng Yuan; Yu Jing; Zakhar Lanetc; Aleksandr Zhuravljov; Fatemeh Soleimani; Guangyao Si; Ryan T. Armstrong; Peyman Mostaghimi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Yulai Zhang; Peyman Mostaghimi; Ryan T. Armstrong;Abstract Shale rock is challenging to characterize due to its complex multiscale structure, which directly influences various mass transport processes. The diffusion of a single component fluid through shale rocks is further complicated by the existence of various pore types, e.g. organic or intercrystalline, and fractures that range in size from sub-nanometer to micrometer. We present a workflow that investigates the process of liquid/liquid diffusion in shale rocks, which provides insights into its multiscale structure. We combine scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB-SEM), pore-scale simulations and high-resolution 4D X-ray microcomputed tomography to investigate shale structure and effective diffusivities at various length scales. We find that fractures, matrix heterogeneity and pore-level characteristics are important factors that influence mass transport. Fractures influence effective diffusivities at the core scale providing high diffusivities over early time scales. Matrix heterogeneity results in effective diffusivity differences at the sub-core scale that are lower than the effective diffusivities measured at the core scale at early time. Effective diffusivities for organic matter rich regions are at least one order of magnitude greater than regions with low organic matter. Within the organic matter rich regions, effective diffusivities are mostly within one order of magnitude. These analyses provide a framework to build multi-scale shale models based on the pore-scale structure (10−9 m) of organic matter rich regions, distribution of porosities at the sub-core scale (10−6 m) and the arrangement of fractures at the core scale (10−3 m).
Journal of Petroleum... arrow_drop_down Journal of Petroleum Science and EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.petrol.2019.106271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Petroleum... arrow_drop_down Journal of Petroleum Science and EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.petrol.2019.106271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:SPE Ryan T. Armstrong; Maher Rahayyem; Yara A. Alzahid; Lucas Evangelista; Amalia Halim; Peyman Mostaghimi;doi: 10.2118/195116-ms
Abstract Enzyme Enhanced Oil Recovery (EEOR) has recently been categorized as one of the most effective EOR mechanisms. Laboratory and field studies have reported up to 16% of incremental oil recovery rates. EEOR recovers oil mainly by two main mechanisms: lowering the interfacial tension between brine and oil and altering the wettability on rock grains to a more water-wet condition. Therefore, EEOR would promote mobilization of capillary-trapped oil after regular waterflooding. Since capillary-trapped oil resides at the micro-scale, it is essential to assess EEOR fluid-fluid interaction at that scale. To further investigate the ways in which these enzymes contribute to EOR, an experimental micro-scale approach was developed in which EEOR was analyzed using polydimethylsiloxane (PDMS) microfluidic devices. The PDMS microfluidics device was based on X-ray micro-CT images of a Bentheimer sandstone with resolution of 4.95 μm. We first compared the IFT reduction capabilities of one class of enzyme (Apollo GreenZyme ®) and a commercial surfactant (J13131) obtained from Shell Chemicals. For GreenZyme concentrations of 0.5, 1.5 and 2 wt%, the IFT values between GreenZyme solution and oil are 4.2, 0.7 and 0.6 mN/m, respectively. Whereas the IFT values for 0.5 wt% surfactant solutions and deionized water are 1.1 and 32 mN/m, respectively. We then compared the oil recovery of the two systems using the aforementioned sandstone PDMS microfluidics device. Recovery values up to 92% of oilwere obtained using GreenZyme. Surfactant and waterflooding on the same PDMS chips had recovery values of 86 and 80%, respectively. This study provides insights and direct visualization of the micro-scale oil recovery mechanisms of EEOR that can be used for design of effective EEOR flooding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/195116-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/195116-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Authors: Jing, Y; Armstrong, RT; Lamei Ramandi, H; Mostaghimi, P;handle: 1959.4/unsworks_42430
Abstract Coal seam gas (CSG) is gaining global interests due to its natural abundance and environmental benefits in comparison to more traditional energy sources. However, due to its significant heterogeneity and complex porous structure, it is challenging to characterise and thus predict petrophysical properties. Moreover, the fracture network of coal poses a major challenge for direct numerical simulations on segmented images collected from X-ray micro-computed tomography (μCT). The segmentation of coal images is problematic and often results in misclassification of coal features that subsequently causes numerical instabilities. This paper aims to develop an advanced image analysis method and a novel discrete fracture network model to circumvent these issues. Coal μCT data are utilised for the acquisition of structural parameters and then discrete fracture networks are built to reconstruct representative coal images. The modelling method mimics the cleat formation process and reproduces particular cleat network patterns. The reconstructed network preserves the key attributes of coal, i.e. connectivity and cleat structure, while not being limited in terms of size and/or resolution. Furthermore, direct numerical simulations based on lattice Boltzmann method are performed on the cleat network realisations to evaluate coal permeability. We find that directional permeabilities result in different system scaling effects because of the dependence on the underlying structure of the cleat network. The developed method facilitates the evaluation of the relationship between coal cleat structure and resulting flow properties, which are steps forward in the evaluation of coal petrophysical properties at the core scale.
UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2016.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV J. William Carey; Dorthe Wildenschild; Ryan T. Armstrong; A. L. Herring; Iain M. Young;AbstractWe present experimental results based on computed x-ray microtomography (CMT) for quantifying capillary trapping mechanisms as a function of fluid properties using several pairs of analog fluids to span a range of potential supercritical CO2-brine conditions. Our experiments areconducted in a core-flood apparatus using synthetic porous media and we investigate capillary trapping by measuring trapped non-wetting phase area as a function of varying interfacial tension, viscosity, and fluid flow rate. Experiments are repeated for a single sintered glass bead core using three different non-wetting phase fluids, and varying concentrations of surfactants, to explore and separate the effects of interfacial tension, viscosity, and fluid flow rate. Analysis of the data demonstrates distinct and consistent differences in the amount of initial (i.e. following CO2 injection) and residual (i.e. following flood or WAG scheme) non-wetting phase occupancy as a function of fluid properties and flow rate. Further experimentation and analysis is needed, but these preliminary results indicate trends that can guide design of injection scenarios such that both initial and residual trapped gas occupancy is optimized.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 70 citations 70 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.464&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Industrial Transformation..., ARC | Linkage Projects - Grant ..., ARC | Future Fellowships - Gran...ARC| Industrial Transformation Training Centres - Grant ID: IC200100023 ,ARC| Linkage Projects - Grant ID: LP200100255 ,ARC| Future Fellowships - Grant ID: FT170100224Ying Da Wang; Quentin Meyer; Kunning Tang; James E. McClure; Robin T. White; Stephen T. Kelly; Matthew M. Crawford; Francesco Iacoviello; Dan J. L. Brett; Paul R. Shearing; Peyman Mostaghimi; Chuan Zhao; Ryan T. Armstrong;AbstractProton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity and water, suffer acute liquid water challenges. Accurate liquid water modelling is inherently challenging due to the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging and modelling capabilities are limiting simulations to small areas (<1 mm2) or simplified architectures. Herein, an advancement in water modelling is achieved using X-ray micro-computed tomography, deep learned super-resolution, multi-label segmentation, and direct multi-phase simulation. The resulting image is the most resolved domain (16 mm2with 700 nm voxel resolution) and the largest direct multi-phase flow simulation of a fuel cell. This generalisable approach unveils multi-scale water clustering and transport mechanisms over large dry and flooded areas in the gas diffusion layer and flow fields, paving the way for next generation proton exchange membrane fuel cells with optimised structures and wettabilities.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-35973-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-35973-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors: Jing, Y; Armstrong, RT; Mostaghimi, P;handle: 1959.4/unsworks_64917
Abstract In coal seam gas (CSG) reservoirs, the underlying fracture networks play a critical role in controlling flow pathways of methane and water phases. Thus, study of flow in fracture networks via different numerical modelling methods is of importance. Compared to direct flow simulation, the Fracture Pipe Network Model (FPNM) is an effective means of modelling fluid flow in a fracture network due to its computational efficiency. However, constructing FPNM for authentic samples is challenging due to the limited fracture data at the core scale. In addition, application of FPNM for coal is challenging due to its complex internal fracture network. With X-ray micro-computed tomography (micro-CT) imaging, internal fracture network of coal samples can be visualised non-destructively, providing deterministic input data for FPNM. However, analysing fractures individually and characterising network connectivity based on micro-CT images are difficult, due to complex interactions, irregular fracture geometry, resolution limitation and image noises. In this paper, we develop a framework for constructing image-based FPNM for real fractured coal cores for fast prediction of permeability. Compared with conventional FPNM, each pipe element of our improved FPNM has the identical properties (orientations, length, aperture and roughness) with its corresponding data from the real sample. By comparing permeability values obtained from FPNMs, micro-CT images and voxelised DFNs, we conclude that FPNM can effectively estimate the permeability of original fracture networks while requiring significantly lower computational cost that make it a suitable framework for expensive multi-phase multiphysics flow simulations.
UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_64917Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_64917Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.117447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Funded by:ARC | Discovery Early Career Re...ARC| Discovery Early Career Researcher Award - Grant ID: DE180100082Authors: A.L. Herring; C. Sun; R.T. Armstrong; M. Saadatfar;International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Elizabeth J.H. Kimbrel; Dorthe Wildenschild; Anna L. Herring; Ryan T. Armstrong;International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2022.103758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Ryan T. Armstrong; Brian K. Bay; Dorthe Wildenschild; Ivan Lunati; A. L. Herring; Elizabeth Harper Kimbrel;Abstract Geological carbon sequestration is being considered worldwide as a means of mitigating anthropogenic emission of greenhouse gases. During sequestration, carbon dioxide (CO 2 ) gas effluent is captured from coal-fired power plants or other concentrated emission sources and injected into saline aquifers or depleted oil reservoirs for long term storage. In an effort to fully understand and optimize CO 2 trapping efficiency, the capillary mechanisms that immobilize subsurface CO 2 were analyzed at the pore-scale. Pairs of proxy fluids representing the potential range of in-situ conditions of supercritical CO 2 (nonwetting fluid) and brine (wetting fluid) were used during experimentation. The two fluids were imbibed and drained from a flow cell apparatus containing a sintered glass bead core. Fluid parameters (such as interfacial tension and fluid viscosities) and flow rate were altered to characterize their relative impact on capillary trapping. Computed x-ray microtomography (microCT) was used to quantify immobilized nonwetting fluid volumes after imbibition and drainage events. MicroCT-analyzed data suggests that capillary trapping in sintered glass bead (a mildly consolidated porous medium) is dictated by the capillary number ( Ca ), the viscosity ratio ( M ), and the Bond number ( Bo ) of the system, reflecting that all three viscous, capillary, and gravity forces affect the displacement process to varying degree as their relative importance changes. The amount of residual trapped nonwetting phase was observed to increase with increasing nonwetting fluid viscosity, and with decreasing density difference of the fluids; this suggests that CO 2 sequestration can potentially be engineered for optimal trapping through alterations to the viscosity or density of supercritical CO 2 .
International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticleLicense: Elsevier Non-CommercialData sources: UnpayWallInternational Journal of Greenhouse Gas ControlArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Greenhouse Gas ControlArticleLicense: Elsevier Non-CommercialData sources: UnpayWallInternational Journal of Greenhouse Gas ControlArticle . 2015License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)International Journal of Greenhouse Gas ControlArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijggc.2015.07.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170104417Meng Yuan; Yu Jing; Zakhar Lanetc; Aleksandr Zhuravljov; Fatemeh Soleimani; Guangyao Si; Ryan T. Armstrong; Peyman Mostaghimi;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.127255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Yulai Zhang; Peyman Mostaghimi; Ryan T. Armstrong;Abstract Shale rock is challenging to characterize due to its complex multiscale structure, which directly influences various mass transport processes. The diffusion of a single component fluid through shale rocks is further complicated by the existence of various pore types, e.g. organic or intercrystalline, and fractures that range in size from sub-nanometer to micrometer. We present a workflow that investigates the process of liquid/liquid diffusion in shale rocks, which provides insights into its multiscale structure. We combine scanning electron microscopy (SEM), focused ion beam-scanning electron microscopy (FIB-SEM), pore-scale simulations and high-resolution 4D X-ray microcomputed tomography to investigate shale structure and effective diffusivities at various length scales. We find that fractures, matrix heterogeneity and pore-level characteristics are important factors that influence mass transport. Fractures influence effective diffusivities at the core scale providing high diffusivities over early time scales. Matrix heterogeneity results in effective diffusivity differences at the sub-core scale that are lower than the effective diffusivities measured at the core scale at early time. Effective diffusivities for organic matter rich regions are at least one order of magnitude greater than regions with low organic matter. Within the organic matter rich regions, effective diffusivities are mostly within one order of magnitude. These analyses provide a framework to build multi-scale shale models based on the pore-scale structure (10−9 m) of organic matter rich regions, distribution of porosities at the sub-core scale (10−6 m) and the arrangement of fractures at the core scale (10−3 m).
Journal of Petroleum... arrow_drop_down Journal of Petroleum Science and EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.petrol.2019.106271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Petroleum... arrow_drop_down Journal of Petroleum Science and EngineeringArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.petrol.2019.106271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:SPE Ryan T. Armstrong; Maher Rahayyem; Yara A. Alzahid; Lucas Evangelista; Amalia Halim; Peyman Mostaghimi;doi: 10.2118/195116-ms
Abstract Enzyme Enhanced Oil Recovery (EEOR) has recently been categorized as one of the most effective EOR mechanisms. Laboratory and field studies have reported up to 16% of incremental oil recovery rates. EEOR recovers oil mainly by two main mechanisms: lowering the interfacial tension between brine and oil and altering the wettability on rock grains to a more water-wet condition. Therefore, EEOR would promote mobilization of capillary-trapped oil after regular waterflooding. Since capillary-trapped oil resides at the micro-scale, it is essential to assess EEOR fluid-fluid interaction at that scale. To further investigate the ways in which these enzymes contribute to EOR, an experimental micro-scale approach was developed in which EEOR was analyzed using polydimethylsiloxane (PDMS) microfluidic devices. The PDMS microfluidics device was based on X-ray micro-CT images of a Bentheimer sandstone with resolution of 4.95 μm. We first compared the IFT reduction capabilities of one class of enzyme (Apollo GreenZyme ®) and a commercial surfactant (J13131) obtained from Shell Chemicals. For GreenZyme concentrations of 0.5, 1.5 and 2 wt%, the IFT values between GreenZyme solution and oil are 4.2, 0.7 and 0.6 mN/m, respectively. Whereas the IFT values for 0.5 wt% surfactant solutions and deionized water are 1.1 and 32 mN/m, respectively. We then compared the oil recovery of the two systems using the aforementioned sandstone PDMS microfluidics device. Recovery values up to 92% of oilwere obtained using GreenZyme. Surfactant and waterflooding on the same PDMS chips had recovery values of 86 and 80%, respectively. This study provides insights and direct visualization of the micro-scale oil recovery mechanisms of EEOR that can be used for design of effective EEOR flooding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/195116-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/195116-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu