- home
- Advanced Search
Filters
Year range
-chevron_right GO
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Byungsul Min; Matthias Muller; Bettina Wolpensinger; Gerd Fischer; Phedon Palinginis; Dirk Holger Neuhaus; Rolf Brendel;This article investigates the impact of the back-surface-field (BSF) thickness variation within a local aluminum contact on the performance of passivated emitter and rear contact solar cells. A significant difference of BSF thickness between contact endings and the center of dash-shaped contacts is verified experimentally by a comprehensive statistical analysis using scanning electron microscopy. The impact of local BSF thickness differences on the cell performance is studied with 3-D technology computer-aided design (TCAD) device simulations. Several device parameters such as BSF thicknesses, the doping concentration in the BSF profile at rear contacts, or the metallized area fraction at the cell rear side are varied. Our simulation study shows that the open-circuit voltage is mainly affected by locally reduced BSF thicknesses, resulting in an efficiency loss up to 0.14%abs or 0.84%abs, respectively, if an area fraction of 1% or 20% within a local contact has reduced BSF thicknesses. This effect can be minimized either by reducing the metallized area fraction at the cell rear side or by increasing the doping concentration in the BSF profile at aluminum rear contacts. In addition, we demonstrate that the 3-D simulations can be approximated with 2-D simulations by applying a single doping profile with an average BSF thickness, calculated with the harmonic mean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | DISCEC| DISCTobias F. Wietler; Byungsul Min; Sina Reiter; Yevgeniya Larionova; Rolf Reineke-Koch; Frank Heinemeyer; Rolf Brendel; Armin Feldhoff; Jan Krugener; Dominic Tetzlaff; Robby Peibst;We investigate the enhancement in transparency and conductivity of aluminum doped zinc oxide (ZnO:Al) layers upon high-temperature annealing and its impact on contact resistance, as well as, on passivation properties of carrier selective junctions based on doped polycrystalline Si on a passivating silicon oxide (POLO). The temperature stability of these junctions allows annealing of the ZnO:Al/POLO combination up to 600 °C. We prepare ZnO:Al films by dc magnetron sputtering at room temperature. We determine the complex refractive index of ZnO:Al in dependence of post-deposition annealing (PDA) temperature by spectroscopic ellipsometry. High-temperature annealing improves the conductivity and reduces the absorption within ZnO:Al. The optical losses in a ZnO:Al/POLO stack are rather limited by the poly-Si layer than by the ZnO:Al. The sheet resistance improves from roughly 20 000 Ω/sq for 80 nm thick as-deposited ZnO:Al films to 72 Ω/sq after fast firing at 600 °C. At the same time, PDA cures the damage induced in the POLO junctions during ZnO:Al deposition. After PDA with AlxOy capping layers, the passivation quality even surpasses the initial level. A transmission electron microscopy analysis of the interface between the ZnO:Al and the underlying poly-Si reveals the formation of a silicon oxide like interfacial layer after PDA at 400 °C. This interfacial layer causes a high contact resistivity of the metal/ZnO:Al/POLO-junction and could limit the thermal budget for cell processing. Our results indicate that after successful process adjustment, ZnO:Al could substitute In-based transparent conductive oxides on POLO cells for cost reasons, as well as, enable a high efficiency potential.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 27visibility views 27 download downloads 301 Powered bymore_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Michael Winter; Stefan Bordihn; Robby Peibst; Rolf Brendel; Jan Schmidt;Degradation and regeneration of recombination parameters can occur in the bulk and at the surfaces of silicon solar cells. This article focuses on the time-resolved analysis of the recombination properties of textured 1.7 Ω cm boron-doped p -type Cz-Si and 5 Ω cm phosphorus-doped n -type Cz-Si wafers, where the surfaces are passivated by n + poly-Si on interfacial oxide layers exposed to a rapid thermal annealing (RTA) step in a conventional firing furnace. We observe a thermally activated instability in the lifetime over the entire examined injection range. Our experiments show that minority carrier injection (e.g., by illumination) is not required. Degradation in the surface passivation quality of the poly-Si on oxide layer—corresponding to an increase of the saturation current density J 0 by up to a factor of five—causes the degradation of the effective lifetime. Interestingly, the surface passivation fully regenerates under prolonged annealing and finally improves even beyond the initial state. Both the extent of the lifetime degradation and the change in J 0 depend on the postprocessing treatment temperature which we varied between 80 and 400 °C. Our results indicate that two different processes are responsible for the degradation and the regeneration. Reference samples which did not receive an RTA treatment show no degradation of the surface passivation quality. The RTA treatment applied therefore triggers the degradation effect. A large improvement of the surface passivation quality under prolonged annealing (e.g., at 400 °C) is observed for all samples examined in this study.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.2964987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.2964987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Soren Schafer; Rolf Brendel;The widely accepted limiting efficiency for crystalline silicon solar cells with Lambertian light trapping under 1 sun was previously calculated to be 29.43% for a 110-μm-thick device by using the commonly applied weak absorption approximation for light trapping. However, the short-circuit current density increases by 0.17 mA/cm2 when modeling the optical absorptance of an ideal Lambertian light trapping scheme exactly. The resulting new 1-sun efficiency limit is 29.56% and holds for a cell that is 98.1 μm in thickness.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2824024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2824024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 04 Jun 2024Publisher:Wiley Raphael Niepelt; Marlon Schlemminger; Dennis Bredemeier; Florian Peterssen; Clemens Lohr; Astrid Bensmann; Richard Hanke-Rauschenbach; Rolf Brendel;A fast and extensive build‐up of green hydrogen production is a crucial element for the global energy transition. The availability of low‐cost renewable energy at high operating hours of the electrolyzer is a central criterion in today's choice of location for green hydrogen production. It is analyzed how decreasing electrolyzer costs that are expected by many may influence this choice. The energy system optimization framework ESTRAM is used to find the optimum configuration of wind turbine, photovoltaic (PV), and electrolyzer capacity for covering a given hydrogen demand by locally produced green hydrogen in different European locations. It is found that PV is part of the cost‐optimal solution in 96% of 1372 statistical regions in Europe. Decreasing electrolyzer costs are favoring the utilization of PV in wind–solar hybrid plants. At low electrolyzer costs, pure solar hydrogen outperforms the hybrid variant in many places if hydrogen storage is available, even with few full operating hours per year. At the same time, production costs are converging significantly. The article adds a new perspective to the discussion, as it is systematically shown how further technology development may lead to a shift in locational advantages for green hydrogen production, what should be considered to avoid stranded assets when building infrastructure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202300317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202300317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Karsten Bothe; David Hinken; Rolf Brendel;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2023.3309932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2023.3309932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Robby Peibst; Michael Rienacker; Byungsul Min; Christina Klamt; Raphael Niepelt; Tobias F. Wietler; Thorsten Dullweber; Eduard Sauter; Jens Hubner; Michael Oestreich; Rolf Brendel;We present a novel cell concept that combines the tandem cell approach with the passivated emitter and rear cells (PERC) mainstream technology. As an interface between Si bottom and top cell, we utilize passivating n+-type polysilicon on oxide (POLO) contacts and a p+ poly-Si/n+ poly-Si tunneling junction. Our full area PERC+ Si bottom cells are fabricated within a typical industrial process sequence where the POCl3 diffusion and SiNx deposition are replaced by the POLO junction formation processes. The implied open-circuit voltage i V oc that is measured on these devices reaches up to 708 mV (684 mV) under 1 sun (under filtered spectrum to simulated top cell absorption). On sister cells with planar front side, the respective i V oc values are 718 mV (696 mV). In order to understand the device physics of our ultra-abrupt p+ poly-Si/n+ poly-Si tunneling junction, we determined the carrier lifetime in the poly-Si by time-resolved photoluminescence. The extracted lifetimes of 42–54 ps enter as input parameter for numerical Sentaurus Device simulations. These simulations reveal the importance of band-to-band and trap-assisted tunneling for a low tunneling junction resistivity of 2.95 mΩ·cm2. Experimentally, an upper limit for the combined junction resistance of the p+ poly-Si/n+ poly-Si/SiOx stack of 100 mΩ·cm2 is determined.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2876999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2876999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Dennis Bredemeier; Carsten Schinke; Raphael Niepelt; Rolf Brendel;doi: 10.1002/pip.3756
AbstractPhotovoltaics (PVs) on building facades, either building‐integrated or building‐attached, offer a large energy yield potential especially in densely populated urban areas. Targeting this potential requires the availability of planning tools such as insolation forecasts. However, calculating the PV potential of facade surfaces in an urban environment is challenging. Complex time‐dependent shadowing and light reflections must be considered. In this contribution, we present fast ray tracing calculations for insolation forecasts in large urban environments using clustering of Sun positions into typical days. We use our approach to determine time resolved PV capacity factors for rooftops and facades in a wide variety of environments, which is particularly useful for energy system analyses. The advantage of our approach is that the determined capacity factors for one geographic location can be easily extended to larger geographic regions. In this contribution, we perform calculations in three exemplary environments and extend the results globally. Especially for facade surfaces, we find that there is a pronounced intra‐day and also seasonal distribution of PV potentials that strongly depends on the degree of latitude. The consideration of light reflections in our ray tracing approach causes an increase in calculated full load hours for facade surfaces between 10% and 25% for most geographical locations.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Andrej Campa; Franc Smole; Nils Folchert; Tobias Wietler; Byungsul Min; Rolf Brendel; Marko Topic;We investigate the transport mechanism of poly-Si-based carrier-selective junctions using the two-dimensional numerical semiconductor device simulations. The detailed transport model considers the charge carrier transport through the pinholes as well as tunneling through a very thin silicon oxide simultaneously. For the verification of the simulation model, the complete temperature dependent transfer length method is modeled and its results are verified with measurements of two different samples. By means of rigorous simulations, the influence of different pinhole geometrical and material parameters on junction resistivity are investigated and explained in detail. From the presented results, the fundamental understanding needed for optimizing the poly-Si-based carrier selective junction in respect to the main design parameters such as doping level in poly-Si, annealing time, silicon oxide thickness, and pinhole density is given. The detailed analysis shows the pinhole channel plays the most crucial role in the design of poly-Si-based carrier-selective junctions if the silicon oxide layer thickness is larger than 2 nm.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2943610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2943610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Byungsul Min; Matthias Muller; Hannes Wagner; Gerd Fischer; Rolf Brendel; Pietro P. Altermatt; Holger Neuhaus;Many manufacturers choose the passivated emitter and rear cell (PERC) approach in order to surpass the 20% cell efficiency level in mass production. In this paper, we study the efficiency potential of the PERC approach under realistic assumptions for incremental improvements of existing technologies by device simulations. Based on the most recent published experimental results, we find that the PERC structure is able to reach about 24% cell efficiency in mass production by an ongoing sequence of incremental improvements. As a guideline for future developments, we provide a method to improve cell efficiency most effectively by monitoring the current losses at the maximum power point. By means of numerical device modeling, we identify some key technologies toward 24% efficient PERC cells and provide its technology-related target requirements.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2749007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2749007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Byungsul Min; Matthias Muller; Bettina Wolpensinger; Gerd Fischer; Phedon Palinginis; Dirk Holger Neuhaus; Rolf Brendel;This article investigates the impact of the back-surface-field (BSF) thickness variation within a local aluminum contact on the performance of passivated emitter and rear contact solar cells. A significant difference of BSF thickness between contact endings and the center of dash-shaped contacts is verified experimentally by a comprehensive statistical analysis using scanning electron microscopy. The impact of local BSF thickness differences on the cell performance is studied with 3-D technology computer-aided design (TCAD) device simulations. Several device parameters such as BSF thicknesses, the doping concentration in the BSF profile at rear contacts, or the metallized area fraction at the cell rear side are varied. Our simulation study shows that the open-circuit voltage is mainly affected by locally reduced BSF thicknesses, resulting in an efficiency loss up to 0.14%abs or 0.84%abs, respectively, if an area fraction of 1% or 20% within a local contact has reduced BSF thicknesses. This effect can be minimized either by reducing the metallized area fraction at the cell rear side or by increasing the doping concentration in the BSF profile at aluminum rear contacts. In addition, we demonstrate that the 3-D simulations can be approximated with 2-D simulations by applying a single doping profile with an average BSF thickness, calculated with the harmonic mean.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3068603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:EC | DISCEC| DISCTobias F. Wietler; Byungsul Min; Sina Reiter; Yevgeniya Larionova; Rolf Reineke-Koch; Frank Heinemeyer; Rolf Brendel; Armin Feldhoff; Jan Krugener; Dominic Tetzlaff; Robby Peibst;We investigate the enhancement in transparency and conductivity of aluminum doped zinc oxide (ZnO:Al) layers upon high-temperature annealing and its impact on contact resistance, as well as, on passivation properties of carrier selective junctions based on doped polycrystalline Si on a passivating silicon oxide (POLO). The temperature stability of these junctions allows annealing of the ZnO:Al/POLO combination up to 600 °C. We prepare ZnO:Al films by dc magnetron sputtering at room temperature. We determine the complex refractive index of ZnO:Al in dependence of post-deposition annealing (PDA) temperature by spectroscopic ellipsometry. High-temperature annealing improves the conductivity and reduces the absorption within ZnO:Al. The optical losses in a ZnO:Al/POLO stack are rather limited by the poly-Si layer than by the ZnO:Al. The sheet resistance improves from roughly 20 000 Ω/sq for 80 nm thick as-deposited ZnO:Al films to 72 Ω/sq after fast firing at 600 °C. At the same time, PDA cures the damage induced in the POLO junctions during ZnO:Al deposition. After PDA with AlxOy capping layers, the passivation quality even surpasses the initial level. A transmission electron microscopy analysis of the interface between the ZnO:Al and the underlying poly-Si reveals the formation of a silicon oxide like interfacial layer after PDA at 400 °C. This interfacial layer causes a high contact resistivity of the metal/ZnO:Al/POLO-junction and could limit the thermal budget for cell processing. Our results indicate that after successful process adjustment, ZnO:Al could substitute In-based transparent conductive oxides on POLO cells for cost reasons, as well as, enable a high efficiency potential.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 27visibility views 27 download downloads 301 Powered bymore_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2878337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Michael Winter; Stefan Bordihn; Robby Peibst; Rolf Brendel; Jan Schmidt;Degradation and regeneration of recombination parameters can occur in the bulk and at the surfaces of silicon solar cells. This article focuses on the time-resolved analysis of the recombination properties of textured 1.7 Ω cm boron-doped p -type Cz-Si and 5 Ω cm phosphorus-doped n -type Cz-Si wafers, where the surfaces are passivated by n + poly-Si on interfacial oxide layers exposed to a rapid thermal annealing (RTA) step in a conventional firing furnace. We observe a thermally activated instability in the lifetime over the entire examined injection range. Our experiments show that minority carrier injection (e.g., by illumination) is not required. Degradation in the surface passivation quality of the poly-Si on oxide layer—corresponding to an increase of the saturation current density J 0 by up to a factor of five—causes the degradation of the effective lifetime. Interestingly, the surface passivation fully regenerates under prolonged annealing and finally improves even beyond the initial state. Both the extent of the lifetime degradation and the change in J 0 depend on the postprocessing treatment temperature which we varied between 80 and 400 °C. Our results indicate that two different processes are responsible for the degradation and the regeneration. Reference samples which did not receive an RTA treatment show no degradation of the surface passivation quality. The RTA treatment applied therefore triggers the degradation effect. A large improvement of the surface passivation quality under prolonged annealing (e.g., at 400 °C) is observed for all samples examined in this study.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.2964987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2020.2964987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Soren Schafer; Rolf Brendel;The widely accepted limiting efficiency for crystalline silicon solar cells with Lambertian light trapping under 1 sun was previously calculated to be 29.43% for a 110-μm-thick device by using the commonly applied weak absorption approximation for light trapping. However, the short-circuit current density increases by 0.17 mA/cm2 when modeling the optical absorptance of an ideal Lambertian light trapping scheme exactly. The resulting new 1-sun efficiency limit is 29.56% and holds for a cell that is 98.1 μm in thickness.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2824024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2018 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2824024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 04 Jun 2024Publisher:Wiley Raphael Niepelt; Marlon Schlemminger; Dennis Bredemeier; Florian Peterssen; Clemens Lohr; Astrid Bensmann; Richard Hanke-Rauschenbach; Rolf Brendel;A fast and extensive build‐up of green hydrogen production is a crucial element for the global energy transition. The availability of low‐cost renewable energy at high operating hours of the electrolyzer is a central criterion in today's choice of location for green hydrogen production. It is analyzed how decreasing electrolyzer costs that are expected by many may influence this choice. The energy system optimization framework ESTRAM is used to find the optimum configuration of wind turbine, photovoltaic (PV), and electrolyzer capacity for covering a given hydrogen demand by locally produced green hydrogen in different European locations. It is found that PV is part of the cost‐optimal solution in 96% of 1372 statistical regions in Europe. Decreasing electrolyzer costs are favoring the utilization of PV in wind–solar hybrid plants. At low electrolyzer costs, pure solar hydrogen outperforms the hybrid variant in many places if hydrogen storage is available, even with few full operating hours per year. At the same time, production costs are converging significantly. The article adds a new perspective to the discussion, as it is systematically shown how further technology development may lead to a shift in locational advantages for green hydrogen production, what should be considered to avoid stranded assets when building infrastructure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202300317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/solr.202300317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Karsten Bothe; David Hinken; Rolf Brendel;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2023.3309932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2023.3309932&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Robby Peibst; Michael Rienacker; Byungsul Min; Christina Klamt; Raphael Niepelt; Tobias F. Wietler; Thorsten Dullweber; Eduard Sauter; Jens Hubner; Michael Oestreich; Rolf Brendel;We present a novel cell concept that combines the tandem cell approach with the passivated emitter and rear cells (PERC) mainstream technology. As an interface between Si bottom and top cell, we utilize passivating n+-type polysilicon on oxide (POLO) contacts and a p+ poly-Si/n+ poly-Si tunneling junction. Our full area PERC+ Si bottom cells are fabricated within a typical industrial process sequence where the POCl3 diffusion and SiNx deposition are replaced by the POLO junction formation processes. The implied open-circuit voltage i V oc that is measured on these devices reaches up to 708 mV (684 mV) under 1 sun (under filtered spectrum to simulated top cell absorption). On sister cells with planar front side, the respective i V oc values are 718 mV (696 mV). In order to understand the device physics of our ultra-abrupt p+ poly-Si/n+ poly-Si tunneling junction, we determined the carrier lifetime in the poly-Si by time-resolved photoluminescence. The extracted lifetimes of 42–54 ps enter as input parameter for numerical Sentaurus Device simulations. These simulations reveal the importance of band-to-band and trap-assisted tunneling for a low tunneling junction resistivity of 2.95 mΩ·cm2. Experimentally, an upper limit for the combined junction resistance of the p+ poly-Si/n+ poly-Si/SiOx stack of 100 mΩ·cm2 is determined.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2876999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2018.2876999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Dennis Bredemeier; Carsten Schinke; Raphael Niepelt; Rolf Brendel;doi: 10.1002/pip.3756
AbstractPhotovoltaics (PVs) on building facades, either building‐integrated or building‐attached, offer a large energy yield potential especially in densely populated urban areas. Targeting this potential requires the availability of planning tools such as insolation forecasts. However, calculating the PV potential of facade surfaces in an urban environment is challenging. Complex time‐dependent shadowing and light reflections must be considered. In this contribution, we present fast ray tracing calculations for insolation forecasts in large urban environments using clustering of Sun positions into typical days. We use our approach to determine time resolved PV capacity factors for rooftops and facades in a wide variety of environments, which is particularly useful for energy system analyses. The advantage of our approach is that the determined capacity factors for one geographic location can be easily extended to larger geographic regions. In this contribution, we perform calculations in three exemplary environments and extend the results globally. Especially for facade surfaces, we find that there is a pronounced intra‐day and also seasonal distribution of PV potentials that strongly depends on the degree of latitude. The consideration of light reflections in our ray tracing approach causes an increase in calculated full load hours for facade surfaces between 10% and 25% for most geographical locations.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.3756&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Andrej Campa; Franc Smole; Nils Folchert; Tobias Wietler; Byungsul Min; Rolf Brendel; Marko Topic;We investigate the transport mechanism of poly-Si-based carrier-selective junctions using the two-dimensional numerical semiconductor device simulations. The detailed transport model considers the charge carrier transport through the pinholes as well as tunneling through a very thin silicon oxide simultaneously. For the verification of the simulation model, the complete temperature dependent transfer length method is modeled and its results are verified with measurements of two different samples. By means of rigorous simulations, the influence of different pinhole geometrical and material parameters on junction resistivity are investigated and explained in detail. From the presented results, the fundamental understanding needed for optimizing the poly-Si-based carrier selective junction in respect to the main design parameters such as doping level in poly-Si, annealing time, silicon oxide thickness, and pinhole density is given. The detailed analysis shows the pinhole channel plays the most crucial role in the design of poly-Si-based carrier-selective junctions if the silicon oxide layer thickness is larger than 2 nm.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2943610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2019.2943610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Byungsul Min; Matthias Muller; Hannes Wagner; Gerd Fischer; Rolf Brendel; Pietro P. Altermatt; Holger Neuhaus;Many manufacturers choose the passivated emitter and rear cell (PERC) approach in order to surpass the 20% cell efficiency level in mass production. In this paper, we study the efficiency potential of the PERC approach under realistic assumptions for incremental improvements of existing technologies by device simulations. Based on the most recent published experimental results, we find that the PERC structure is able to reach about 24% cell efficiency in mass production by an ongoing sequence of incremental improvements. As a guideline for future developments, we provide a method to improve cell efficiency most effectively by monitoring the current losses at the maximum power point. By means of numerical device modeling, we identify some key technologies toward 24% efficient PERC cells and provide its technology-related target requirements.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2749007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 99 citations 99 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2017.2749007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu