- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Carmelo Lo Vecchio; Antonino Salvatore Aricò; Giuseppe Monforte; Vincenzo Baglio;handle: 20.500.14243/341022
Here, in-house CoNC and FeNC have been prepared by, first, chelating the metals (Co or Fe) with ethylene diamine tetra acetic acid, known as EDTA (nitrogen precursor). UV-Visible (UV-Vis) spectrometry has been used to ensure the chelated metal formation. In the next step, the chelated metals have been deposited on a high surface area oxidized carbon support to increase the electrical conductivity. The latter composite material has been thermally treated at 800 °C (CoNC8 and FeNC8) or 1000 °C (CoNC10 and FeNC10) in nitrogen atmosphere in order to create the catalytic sites that will be able to perform the oxygen reduction reaction (ORR) in the acid medium. Electrochemical tests have been carried out to investigate the activity and durability of the electro-catalysts for the ORR. Methanol tolerance properties have been also evaluated for a possible application in direct methanol fuel cells. It appears that FeNC8 is the most active electrocatalyst in the presence of methanol in the base electrolyte, thus showing promising characteristics for direct methanol fuel cells. Instead, stability tests of these metal nitrogen catalysts indicate the best resistance to corrosion for the catalysts treated at 1000 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.12.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.12.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2020 ItalyPublisher:MDPI AG Authors: Lo Faro M; Zignani SC; Antonucci V; Arico AS;The co-electrolysis of CO2 and H2O at intermediate temperature is a viable approach for the power-to-gas conversion that deserves for further investigation, considering the need for green energy storage. The commercial solid oxide electrolyser is a promising device, but it is still facing to solve issues concerning the high operating temperatures and the improvement of gas value. In this paper we reported the recent findings of a simple approach that we have amply suggested for solid oxide cells consisting in the addition of a functional layer coated to the fuel electrode of commercial electrochemical cells. This approach simplifies the transition to the next generation of cells manufactured with the most promising materials currently developed and improves the gas value in the outlet stream of cell. Here, the material in use as a coating layer consisted of a Ni-modified La0.6Sr0.4Fe0.8Co0.2O3 which was developed and demonstrated as promising fuel electrode for solid oxide fuel cells. The results discussed in this paper proved the positive role of Ni-modified perovskite as a coating layer for the cathode, since an improvement of about twice was obtained about the quality of gas produced.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/1/56/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202012.0565.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/1/56/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202012.0565.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Authors: Pier Luigi Antonucci; M. Lo Faro; Antonino S. Aricò; Vincenzo Antonucci;Abstract This study deals with an investigation of the direct oxidation of organic fuels with different molecular weights in Solid Oxide Fuel Cells (SOFCs). It aims to demonstrate that the final products of the oxidation process are essentially CO 2 and water with a very low amount of secondary products. An anodic catalyst formulation characterized by mixed electronic–ionic conductivity (MIEC) in combination with ceria electrolyte was used for this purpose. The anodic catalyst consisted in a composite Ni-modified perovskite mixed with Ce 0.9 Gd 0.1 O 2 . It provided reasonable fuel flexibility in SOFCs. To get insight into the reaction mechanism, the same anode formulation was investigated in an ex-situ autothermal reforming test. The performances achieved with the direct utilization of both gaseous and liquid fuels appear promising for SOFC applications in remote and micro-distributed energy generation as well as for portable power sources. The anode layer demonstrated stable performance with very low amount of carbon deposition during more than 130 h testing under a direct utilization mode of dry organic fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu100 citations 100 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV C. Lo Vecchio; A. Serov; H. Romero; A. Lubers; B. Zulevi; A.S. Aricò; V. Baglio;handle: 20.500.14243/385946
For the first time methanol tolerant Platinum Group Metal-free (PGM-free) Oxygen Reduction Reaction (ORR) electrocatalyst commercially available on market is integrated into the cathodic layer of highly performed Direct Methanol Fuel Cell (DMFC). The intrinsic ORR activity of Fe-N-C electrocatalyst is studied by Rotating Disk Electrode (RDE) technique with and with no methanol added, confirming material inactivity towards Methanol Oxidation Reaction (MOR). The electrocatalyst is tested in DMFC conditions where such important parameters as catalyst:ionomer ratio, concentration of methanol and operational temperature are varied and optimized for highest performance. The obtained activity and methanol tolerance in RDE measurements of commercial Fe-N-C catalyst is found to be comparable with previously reported state-of-the-art PGM-free cathodic materials. Furthermore, this material, used at the cathode compartment of a DMFC, allows reaching the highest power density recorded for PGM-free catalysts in a DMFC until now under similar conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.226948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.226948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Funded by:EC | FotoH2EC| FotoH2Barbera, O.; Lo Vecchio, C.; Trocino, S.; Carbone, A.; Aricò, A. S.; Baglio, V.; Giacoppo, G.;handle: 20.500.14243/465561
An innovative tandem photoelectrochemical cell with a scaled-up active area from 0.25 to 25 cm2 based on low-cost and non-critical raw materials was employed to produce green hydrogen by water splitting. It uses a photoanode/membrane/photocathode tandem cell configuration in which a hematite-based photoanode is layered on a fluorine-doped tin oxide glass for the oxygen evolution reaction, CuO is deposited on a hydrophobic gas diffusion layer as the photocathode for the hydrogen evolution reaction and an anion exchange membrane is used as the electrolyte and gas separator. The solid membrane's low hydrogen and oxygen crossover guarantees the operational stability of the tandem photoelectrochemical cell and the efficient separation of water-splitting products. Significant efforts have been focused on scaling up the cell. It has allowed obtaining, for the first time, a 25 cm2 unit cell prototype. Appropriate design approaches have been considered to optimise water/gas management, current collection, gas-tightness and clamping. The adopted architecture allowed for the reduction of the bias-potential from −1.23 V, generally employed to investigate PEC cells, up to −0.6/-0.4 V 20 h-durability tests demonstrated good resistance to corrosion, showing a constant photocurrent. Efficiency at −0.6 V was about 0.2%. Selective hydrogen production was demonstrated by mass spectrometric analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, France, ItalyPublisher:Elsevier BV Authors: Sebastian Vecino-Mantilla; Sabrina Campagna Zignani; Rose-Noelle Vannier; A. S. Arico; +1 AuthorsSebastian Vecino-Mantilla; Sabrina Campagna Zignani; Rose-Noelle Vannier; A. S. Arico; Massimiliano Lo Faro;handle: 20.500.14243/440807
Solid oxide fuel cell (SOFC) is a mature opportunity for producing power energy in remote areas like islands, where access to the electrical grid is not favoured, and gas distribution is the only viable approach. In this context, generally, biogas represents the most convenient fuel resources in these areas. However, the direct use of biogas in SOFCs is still an issue to be solved due to its negative effect on the conventional Ni-YSZ anode. In this study, to overcome this issue, we suggested using a protective layer coated on the anode of a commercial SOFC. A nickel manganite showing mixed ionic and electronic conductivity tailored specifically for this approach was investigated. The preliminary characterisations showed that the formation of a Ruddlesden-Popper (RP) n ¼ 1 structure supporting fine encapsulated particles based on Ni was formed around 800 C in consequence of the reducing environment. The electrochemical experiments carried out for 270 h demonstrated for the coated cell significant stability in the presence of dry biogas, albeit an ageing effect was noticed in the electrical percolation of both cell electrodes. The post mortem analyses revealed an attractive redox property for the nickel manganite, which partially returned to the RP n ¼ 2 phase. Moreover, the absence of carbon deposits on the anode suggests possible applications for this approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | HPEM2GASEC| HPEM2GASA S Aricò; S Siracusano; V Baglio; N Van Dijk; L Merlo;handle: 20.500.14243/337782
Water electrolysis supplied by renewable energy is the foremost technology for producing "green" hydrogen for fuel cell vehicles. In addition, the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis, based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane, Aquivion®, with various cathode and anode noble metal loadings, were investigated in terms of both performance and durability. Utilizing a nanosized Ir0.7Ru0.3Ox solid solution anode catalyst and a supported Pt/C cathode catalyst, in combination with the Aquivion® membrane, gave excellent electrolysis performances exceeding 3.2 A·cm-2 at 1.8 V terminal cell voltage (~80 % efficiency) at 90 °C in the presence of a total catalyst loading of 1.6 mg?cm-2. A very small loss of efficiency, corresponding to 30 mV voltage increase, was recorded at 3 A?cm-2 using a total noble metal catalyst loading of less than 0.5 mg·cm-2 (compared to the industry standard of 2 mg·cm-2). Steady-state durability tests, carried out for 1000 h at 1 A?cm-2, showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg·cm-2 (cell voltage increase ~5 ?V/h). Moderate degradation rate (cell voltage increase ~15 ?V/h) was recorded for the low loading 0.5 mg·cm-2, MEA. Similar stability characteristics were observed in durability tests at 3 A·cm-2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane, the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Embargo end date: 31 Mar 2025Publisher:Zenodo Funded by:EC | HYScaleEC| HYScaleBRIGUGLIO, NICOLA; Arico', Antonino Salvatore; moulaee, Kaveh; Keeley, Gareth; Fage, Julien; Hosseiny, Schwan; Morawietz, Tobias; Chmielarz, Jagoda Justyna;The ultimate aim of the HYScale project is the development of a large-area (400 cm²) stack with a power of 100 kW. This requires the upscaling and optimization of membranes, ionomers and electrodes (WP2). In the first eighteen months of the project, WPs 2 and 3 have been working closely together to take this first important step towards achieving the 100 kW stack, i.e. the assembly of a large-area single cell using MEAs based entirely on components produced within the project, and the investigation of their electrochemical performance and stability. This deliverable reports initial results obtained at CNR and DLR using a small single cell, primarily investigating the issue of which material to use as the PTL at the cathode. It goes on to describe findings obtained using the large cell (ca. 400cm2), with which the AionFLX membrane developed at CENmat is compared to the PiperION benchmark (CNR).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | NEPTUNEEC| NEPTUNEAuthors: Panto Fabiola; Siracusano S.; Briguglio N.; Arico A. S.;handle: 20.500.14243/385079
Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mg PGM cm). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 h operation at high current density (4 A cm) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 h. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm, here achieved, appears very promising to decrease operating expenditures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Luis Gerardo Arriaga; Vincenzo Antonucci; R. Ornelas; Antonino S. Aricò; J.C. Cruz; Vincenzo Baglio; Stefania Siracusano;Abstract A new generation of highly efficient and non-polluting energy conversion and storage systems is vital to meeting the challenges of global warming and the finite reality of fossil fuels. In this work, nanosized Pt/IrO2 electrocatalysts are synthesized and investigated for the oxygen evolution and reduction reactions in unitized regenerative fuel cells (URFCs). The catalysts are prepared by decorating Pt nanoparticles (2–10 nm) onto the surface of a nanophase IrO2 (7 nm) support using an ultrasonic polyol method. The synthesis procedure allows deposition of metallic Pt nanoparticles on Ir-oxide without causing any occurrence of metallic Ir. The latter is significantly less active for oxygen evolution than the corresponding oxide. This process represents an important progress with respect to the state of the art in this field being the oxygen electrocatalyst generally obtained by mechanical mixing of Pt and IrO2. The nanosized Pt/IrO2 (50:50 wt.%) is sprayed onto a Nafion 115 membrane and used as dual function oxygen electrode, whereas 30 wt.% Pt/C is used as dual function hydrogen electrode in the URFC. Electrochemical activity of the membrane-electrode assembly (MEA) is investigated in a single cell at room temperature and atmospheric pressure both under electrolysis and fuel cell mode to assess the perspectives of the URFC to operate as energy storage device in conjunction with renewable power sources.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.12.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.12.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Carmelo Lo Vecchio; Antonino Salvatore Aricò; Giuseppe Monforte; Vincenzo Baglio;handle: 20.500.14243/341022
Here, in-house CoNC and FeNC have been prepared by, first, chelating the metals (Co or Fe) with ethylene diamine tetra acetic acid, known as EDTA (nitrogen precursor). UV-Visible (UV-Vis) spectrometry has been used to ensure the chelated metal formation. In the next step, the chelated metals have been deposited on a high surface area oxidized carbon support to increase the electrical conductivity. The latter composite material has been thermally treated at 800 °C (CoNC8 and FeNC8) or 1000 °C (CoNC10 and FeNC10) in nitrogen atmosphere in order to create the catalytic sites that will be able to perform the oxygen reduction reaction (ORR) in the acid medium. Electrochemical tests have been carried out to investigate the activity and durability of the electro-catalysts for the ORR. Methanol tolerance properties have been also evaluated for a possible application in direct methanol fuel cells. It appears that FeNC8 is the most active electrocatalyst in the presence of methanol in the base electrolyte, thus showing promising characteristics for direct methanol fuel cells. Instead, stability tests of these metal nitrogen catalysts indicate the best resistance to corrosion for the catalysts treated at 1000 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.12.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.12.084&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint 2020 ItalyPublisher:MDPI AG Authors: Lo Faro M; Zignani SC; Antonucci V; Arico AS;The co-electrolysis of CO2 and H2O at intermediate temperature is a viable approach for the power-to-gas conversion that deserves for further investigation, considering the need for green energy storage. The commercial solid oxide electrolyser is a promising device, but it is still facing to solve issues concerning the high operating temperatures and the improvement of gas value. In this paper we reported the recent findings of a simple approach that we have amply suggested for solid oxide cells consisting in the addition of a functional layer coated to the fuel electrode of commercial electrochemical cells. This approach simplifies the transition to the next generation of cells manufactured with the most promising materials currently developed and improves the gas value in the outlet stream of cell. Here, the material in use as a coating layer consisted of a Ni-modified La0.6Sr0.4Fe0.8Co0.2O3 which was developed and demonstrated as promising fuel electrode for solid oxide fuel cells. The results discussed in this paper proved the positive role of Ni-modified perovskite as a coating layer for the cathode, since an improvement of about twice was obtained about the quality of gas produced.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/1/56/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202012.0565.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/1/56/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202012.0565.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Authors: Pier Luigi Antonucci; M. Lo Faro; Antonino S. Aricò; Vincenzo Antonucci;Abstract This study deals with an investigation of the direct oxidation of organic fuels with different molecular weights in Solid Oxide Fuel Cells (SOFCs). It aims to demonstrate that the final products of the oxidation process are essentially CO 2 and water with a very low amount of secondary products. An anodic catalyst formulation characterized by mixed electronic–ionic conductivity (MIEC) in combination with ceria electrolyte was used for this purpose. The anodic catalyst consisted in a composite Ni-modified perovskite mixed with Ce 0.9 Gd 0.1 O 2 . It provided reasonable fuel flexibility in SOFCs. To get insight into the reaction mechanism, the same anode formulation was investigated in an ex-situ autothermal reforming test. The performances achieved with the direct utilization of both gaseous and liquid fuels appear promising for SOFC applications in remote and micro-distributed energy generation as well as for portable power sources. The anode layer demonstrated stable performance with very low amount of carbon deposition during more than 130 h testing under a direct utilization mode of dry organic fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu100 citations 100 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV C. Lo Vecchio; A. Serov; H. Romero; A. Lubers; B. Zulevi; A.S. Aricò; V. Baglio;handle: 20.500.14243/385946
For the first time methanol tolerant Platinum Group Metal-free (PGM-free) Oxygen Reduction Reaction (ORR) electrocatalyst commercially available on market is integrated into the cathodic layer of highly performed Direct Methanol Fuel Cell (DMFC). The intrinsic ORR activity of Fe-N-C electrocatalyst is studied by Rotating Disk Electrode (RDE) technique with and with no methanol added, confirming material inactivity towards Methanol Oxidation Reaction (MOR). The electrocatalyst is tested in DMFC conditions where such important parameters as catalyst:ionomer ratio, concentration of methanol and operational temperature are varied and optimized for highest performance. The obtained activity and methanol tolerance in RDE measurements of commercial Fe-N-C catalyst is found to be comparable with previously reported state-of-the-art PGM-free cathodic materials. Furthermore, this material, used at the cathode compartment of a DMFC, allows reaching the highest power density recorded for PGM-free catalysts in a DMFC until now under similar conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.226948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.226948&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Funded by:EC | FotoH2EC| FotoH2Barbera, O.; Lo Vecchio, C.; Trocino, S.; Carbone, A.; Aricò, A. S.; Baglio, V.; Giacoppo, G.;handle: 20.500.14243/465561
An innovative tandem photoelectrochemical cell with a scaled-up active area from 0.25 to 25 cm2 based on low-cost and non-critical raw materials was employed to produce green hydrogen by water splitting. It uses a photoanode/membrane/photocathode tandem cell configuration in which a hematite-based photoanode is layered on a fluorine-doped tin oxide glass for the oxygen evolution reaction, CuO is deposited on a hydrophobic gas diffusion layer as the photocathode for the hydrogen evolution reaction and an anion exchange membrane is used as the electrolyte and gas separator. The solid membrane's low hydrogen and oxygen crossover guarantees the operational stability of the tandem photoelectrochemical cell and the efficient separation of water-splitting products. Significant efforts have been focused on scaling up the cell. It has allowed obtaining, for the first time, a 25 cm2 unit cell prototype. Appropriate design approaches have been considered to optimise water/gas management, current collection, gas-tightness and clamping. The adopted architecture allowed for the reduction of the bias-potential from −1.23 V, generally employed to investigate PEC cells, up to −0.6/-0.4 V 20 h-durability tests demonstrated good resistance to corrosion, showing a constant photocurrent. Efficiency at −0.6 V was about 0.2%. Selective hydrogen production was demonstrated by mass spectrometric analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.120154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, France, ItalyPublisher:Elsevier BV Authors: Sebastian Vecino-Mantilla; Sabrina Campagna Zignani; Rose-Noelle Vannier; A. S. Arico; +1 AuthorsSebastian Vecino-Mantilla; Sabrina Campagna Zignani; Rose-Noelle Vannier; A. S. Arico; Massimiliano Lo Faro;handle: 20.500.14243/440807
Solid oxide fuel cell (SOFC) is a mature opportunity for producing power energy in remote areas like islands, where access to the electrical grid is not favoured, and gas distribution is the only viable approach. In this context, generally, biogas represents the most convenient fuel resources in these areas. However, the direct use of biogas in SOFCs is still an issue to be solved due to its negative effect on the conventional Ni-YSZ anode. In this study, to overcome this issue, we suggested using a protective layer coated on the anode of a commercial SOFC. A nickel manganite showing mixed ionic and electronic conductivity tailored specifically for this approach was investigated. The preliminary characterisations showed that the formation of a Ruddlesden-Popper (RP) n ¼ 1 structure supporting fine encapsulated particles based on Ni was formed around 800 C in consequence of the reducing environment. The electrochemical experiments carried out for 270 h demonstrated for the coated cell significant stability in the presence of dry biogas, albeit an ageing effect was noticed in the electrical percolation of both cell electrodes. The post mortem analyses revealed an attractive redox property for the nickel manganite, which partially returned to the RP n ¼ 2 phase. Moreover, the absence of carbon deposits on the anode suggests possible applications for this approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.04.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | HPEM2GASEC| HPEM2GASA S Aricò; S Siracusano; V Baglio; N Van Dijk; L Merlo;handle: 20.500.14243/337782
Water electrolysis supplied by renewable energy is the foremost technology for producing "green" hydrogen for fuel cell vehicles. In addition, the ability to rapidly follow an intermittent load makes electrolysis an ideal solution for grid-balancing caused by differences in supply and demand for energy generation and consumption. Membrane-electrode assemblies (MEAs) designed for polymer electrolyte membrane (PEM) water electrolysis, based on a novel short-side chain (SSC) perfluorosulfonic acid (PFSA) membrane, Aquivion®, with various cathode and anode noble metal loadings, were investigated in terms of both performance and durability. Utilizing a nanosized Ir0.7Ru0.3Ox solid solution anode catalyst and a supported Pt/C cathode catalyst, in combination with the Aquivion® membrane, gave excellent electrolysis performances exceeding 3.2 A·cm-2 at 1.8 V terminal cell voltage (~80 % efficiency) at 90 °C in the presence of a total catalyst loading of 1.6 mg?cm-2. A very small loss of efficiency, corresponding to 30 mV voltage increase, was recorded at 3 A?cm-2 using a total noble metal catalyst loading of less than 0.5 mg·cm-2 (compared to the industry standard of 2 mg·cm-2). Steady-state durability tests, carried out for 1000 h at 1 A?cm-2, showed excellent stability for the MEA with total noble metal catalyst loading of 1.6 mg·cm-2 (cell voltage increase ~5 ?V/h). Moderate degradation rate (cell voltage increase ~15 ?V/h) was recorded for the low loading 0.5 mg·cm-2, MEA. Similar stability characteristics were observed in durability tests at 3 A·cm-2. These high performance and stability characteristics were attributed to the enhanced proton conductivity and good stability of the novel membrane, the optimized structural properties of the Ir and Ru oxide solid solution and the enrichment of Ir species on the surface for the anodic catalyst.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 175 citations 175 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2016.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Embargo end date: 31 Mar 2025Publisher:Zenodo Funded by:EC | HYScaleEC| HYScaleBRIGUGLIO, NICOLA; Arico', Antonino Salvatore; moulaee, Kaveh; Keeley, Gareth; Fage, Julien; Hosseiny, Schwan; Morawietz, Tobias; Chmielarz, Jagoda Justyna;The ultimate aim of the HYScale project is the development of a large-area (400 cm²) stack with a power of 100 kW. This requires the upscaling and optimization of membranes, ionomers and electrodes (WP2). In the first eighteen months of the project, WPs 2 and 3 have been working closely together to take this first important step towards achieving the 100 kW stack, i.e. the assembly of a large-area single cell using MEAs based entirely on components produced within the project, and the investigation of their electrochemical performance and stability. This deliverable reports initial results obtained at CNR and DLR using a small single cell, primarily investigating the issue of which material to use as the PTL at the cathode. It goes on to describe findings obtained using the large cell (ca. 400cm2), with which the AionFLX membrane developed at CENmat is compared to the PiperION benchmark (CNR).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15167444&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:EC | NEPTUNEEC| NEPTUNEAuthors: Panto Fabiola; Siracusano S.; Briguglio N.; Arico A. S.;handle: 20.500.14243/385079
Hydrogen production through polymer electrolyte membrane water electrolysis was investigated at high current density (4 A cm). A PtCo recombination catalyst-based membrane-electrode assembly (MEA) was assessed in terms of performance, efficiency and durability. The electrolysis cell consisted of a thin (50 µm) perfluorosulfonic acid membrane and low platinum group metals (PGM) catalyst loadings (0.6 mg PGM cm). An unsupported PtCo catalyst was successfully integrated in the anode. A composite catalytic layer made of IrRuOx and PtCo assisted both oxygen evolution and oxidation of hydrogen permeated through the membrane. The cell voltage for the recombination catalyst-based MEA was about 30 mV lower than the bare MEA during a 3500 h durability test. The modified MEA showed low performance losses during 3500 h operation at high current density (4 A cm) with low catalyst loadings. A decay rate of 9 µV/h was observed in the last 1000 h. These results are promising for decreasing the capital costs of polymer electrolyte membrane electrolysers. Moreover, the stable voltage efficiency of about 80% vs. the high heating value (HHV) of hydrogen at 4 A cm, here achieved, appears very promising to decrease operating expenditures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115809&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Luis Gerardo Arriaga; Vincenzo Antonucci; R. Ornelas; Antonino S. Aricò; J.C. Cruz; Vincenzo Baglio; Stefania Siracusano;Abstract A new generation of highly efficient and non-polluting energy conversion and storage systems is vital to meeting the challenges of global warming and the finite reality of fossil fuels. In this work, nanosized Pt/IrO2 electrocatalysts are synthesized and investigated for the oxygen evolution and reduction reactions in unitized regenerative fuel cells (URFCs). The catalysts are prepared by decorating Pt nanoparticles (2–10 nm) onto the surface of a nanophase IrO2 (7 nm) support using an ultrasonic polyol method. The synthesis procedure allows deposition of metallic Pt nanoparticles on Ir-oxide without causing any occurrence of metallic Ir. The latter is significantly less active for oxygen evolution than the corresponding oxide. This process represents an important progress with respect to the state of the art in this field being the oxygen electrocatalyst generally obtained by mechanical mixing of Pt and IrO2. The nanosized Pt/IrO2 (50:50 wt.%) is sprayed onto a Nafion 115 membrane and used as dual function oxygen electrode, whereas 30 wt.% Pt/C is used as dual function hydrogen electrode in the URFC. Electrochemical activity of the membrane-electrode assembly (MEA) is investigated in a single cell at room temperature and atmospheric pressure both under electrolysis and fuel cell mode to assess the perspectives of the URFC to operate as energy storage device in conjunction with renewable power sources.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.12.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.12.153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu