- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 AustraliaPublisher:MDPI AG Sherif E. Ammar; Mary Mclntyre; Tom Swan; Julia Kasper; José G. B. Derraik; Michael G. Baker; Simon Hales;Mosquito vectors are extending their range via international travel and trade. Climate change makes New Zealand an increasingly suitable environment for less tropically adapted exotic mosquito vectors to become established. This shift will add a multiplier effect to existing risks of both the establishment of new species and of resident exotic species extending into new areas. We describe trends in the border interceptions of exotic mosquitoes and evaluate the role of imported goods as a pathway for these introductions. Ae. aegypti and Ae. albopictus, the two most commonly intercepted species, were only intercepted in Auckland. Used tyres and machinery were the main mode of entry for both species. The majority of Ae. albopictus were transported as larvae by sea, while most Ae. aegypti were transported as adults by air. Continuing introductions of these mosquitoes, mainly arriving via Japan or Australia, increase the risk of the local transmission of mosquito-borne diseases in New Zealand in general and in the Auckland region in particular. These findings reinforce the need for a high performing and adequately resourced national biosecurity system, particularly port surveillance and inspection. Recommended biosecurity improvements are described.
Tropical Medicine an... arrow_drop_down Tropical Medicine and Infectious DiseaseOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2414-6366/4/3/101/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3390/tropicalmed4030101Data sources: Bielefeld Academic Search Engine (BASE)Tropical Medicine and Infectious DiseaseArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/tropicalmed4030101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tropical Medicine an... arrow_drop_down Tropical Medicine and Infectious DiseaseOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2414-6366/4/3/101/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3390/tropicalmed4030101Data sources: Bielefeld Academic Search Engine (BASE)Tropical Medicine and Infectious DiseaseArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/tropicalmed4030101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Lal, Aparna; Lill, Adrian W.T.; Mcintyre, Mary; Hales, Simon; Baker, Michael G.; French, Nigel P.;To review the available evidence that examines the association between climatic and agricultural land use factors and the risks of enteric zoonoses in humans and consider information needs and possible pathways of intervention.The electronic databases PubMed, Web of Science and Embase and government websites were searched systematically for published literature that investigated the association of climatic and/or agricultural exposures with the incidence of the four most common enteric zoonotic diseases in New Zealand (campylobacteriosis, salmonellosis, cryptosporidiosis and giardiasis). Results The 16 studies in the review demonstrated significant associations between climate, agricultural land use and enteric disease occurrence. The evidence suggests that enteric disease risk from environmental reservoirs is pathogen specific. In some rural regions, environmental pathogen load is considerable, with multiple opportunities for zoonotic transmission.Enteric disease occurrence in NZ is associated with climate variability and agricultural land use. However, these relationships interact with demographic factors to influence disease patterns.Improved understanding of how environmental and social factors interact can inform effective public health interventions under scenarios of projected environmental change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/13538Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2016Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2015 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/13538Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2016Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2015 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Simon Hales; Kamalesh Venugopal; Michael G Baker; Emma Britton;pmid: 23331354
To investigate the temporal relationship between the monthly count of salmonellosis notifications and the monthly average temperature in New Zealand during the period 1965-2006.A negative binomial regression model was used to analyse monthly average ambient temperature and salmonellosis notifications in New Zealand between 1965 and 2006.A 1°C increase in monthly average ambient temperature was associated with a 15% increase in salmonellosis notifications within the same month (IRR 1.15; 95% CI 1.07 - 1.24).The positive association found in this study between temperature and salmonellosis notifications in New Zealand is consistent with the results of studies conducted in other countries. New Zealand is projected to experience an increase in temperature due to climate change. Therefore, all other things being equal, climate change could increase salmonellosis notifications in New Zealand.This association between temperature and salmonellosis should be considered when developing public health plans and climate change adaptation policies. Strategically, existing food safety programs to prevent salmonellosis could be intensified during warmer periods. As the association was strongest within the same month, focusing on improving food handling and storage during this time period may assist in climate change adaptation in New Zealand.
Australian and New Z... arrow_drop_down Australian and New Zealand Journal of Public HealthArticle . 2013Data sources: Europe PubMed Centralhttps://doi.org/10.1111/j.1753...Article . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1753-6405.2010.00495.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian and New Z... arrow_drop_down Australian and New Zealand Journal of Public HealthArticle . 2013Data sources: Europe PubMed Centralhttps://doi.org/10.1111/j.1753...Article . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1753-6405.2010.00495.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Lal, Aparna; Ikeda, Takayoshi; French, Nigel P; Baker, Michael; Hales, Simon;Evaluating the influence of climate variability on enteric disease incidence may improve our ability to predict how climate change may affect these diseases.To examine the associations between regional climate variability and enteric disease incidence in New Zealand.Associations between monthly climate and enteric diseases (campylobacteriosis, salmonellosis, cryptosporidiosis, giardiasis) were investigated using Seasonal Auto Regressive Integrated Moving Average (SARIMA) models.No climatic factors were significantly associated with campylobacteriosis and giardiasis, with similar predictive power for univariate and multivariate models. Cryptosporidiosis was positively associated with average temperature of the previous month (β = 0.130, SE = 0.060, p <0.01) and inversely related to the Southern Oscillation Index (SOI) two months previously (β = -0.008, SE = 0.004, p <0.05). By contrast, salmonellosis was positively associated with temperature (β = 0.110, SE = 0.020, p<0.001) of the current month and SOI of the current (β = 0.005, SE = 0.002, p<0.050) and previous month (β = 0.005, SE = 0.002, p<0.05). Forecasting accuracy of the multivariate models for cryptosporidiosis and salmonellosis were significantly higher.Although spatial heterogeneity in the observed patterns could not be assessed, these results suggest that temporally lagged relationships between climate variables and national communicable disease incidence data can contribute to disease prediction models and early warning systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0083484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0083484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Walter de Gruyter GmbH Nick Wilson; David Slaney; Simon Hales; Michael G Baker; Emma Britton;To review the literature on infectious diseases and meteorological and climate change risk factors in the New Zealand context and to describe a tentative research agenda for future work.We performed literature searches in May 2010 using Medline and Google Scholar. We also searched five health-related government agencies in New Zealand for documentation on climate change and health.The effect of climate variability and change on vector-borne disease has been considered in more detail than any other infectious disease topic (n=20+ journal articles and reports relating to New Zealand). Generally, concern has arisen around the risk of new mosquito incursions and increased risks of dengue and Ross River fevers in the long term. For enteric diseases, the picture from five New Zealand publications is somewhat mixed, although the data indicate that salmonellosis notifications increase with higher monthly temperatures. One interpretation of the New Zealand data is that communities without reticulated water supplies could be more vulnerable to the effects of climate change-mediated increases in protozoan diseases. This information informed a tentative research agenda to address research gaps. Priorities include the need for further work on a more integrated surveillance framework, vector-borne diseases, enteric diseases, skin infections, and then work on topics for which we found no published New Zealand work (such as influenza and leptospirosis). Finally, we found that health-related government agencies in New Zealand have relatively little 'climate change and health' information on their websites.Although some informative work has been done to date, much scope remains for additional research and planning to facilitate prevention, mitigation, and adaptation responses in the New Zealand setting around climate change and infectious disease risks. The tentative research agenda produced could benefit from a wider critique, and government agencies in New Zealand could contribute to informed discussions by better documenting the current state of knowledge on their websites.
Reviews on Environme... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/reveh.2011.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Reviews on Environme... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/reveh.2011.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Lal, Aparna; Hales, Simon; Baker, Michael; French, Nigel P; Kirk, Martyn;Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch).Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends.Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington.Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98500Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2017Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98500Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2017Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:IWA Publishing Authors: Emma Britton; Simon Hales; Michael G Baker; Kamalesh Venugopal;doi: 10.2166/wh.2010.049
pmid: 20375485
Aim: To investigate the spatial relationship between climate variability and cryptosporidiosis and giardiasis notifications in New Zealand between 1997 and 2006. Methods: Negative binomial regression was used to analyse spatial relationships between cryptosporidiosis and giardiasis notifications in New Zealand between 1997 and 2006, and climatological average rainfall and temperature at the Census Area Unit (CAU) level. The quality of domestic water supplies, urban-rural status and deprivation were included as covariates. Main results: Giardiasis: There was a positive association between rainfall and giardiasis and between temperature and giardiasis. Cryptosporidiosis: There was a positive association between rainfall and cryptosporidiosis and a negative association between temperature and cryptosporidiosis. The effect of rainfall was modified by the quality of the domestic water supply. Conclusions: These findings suggest that climate variability affects protozoan disease rates in New Zealand. However, predicting the effect of climate change from this study is difficult, as these results suggest that the projected increases in temperature and rainfall may have opposing effects on cryptosporidiosis rates. Nevertheless, water supply quality appeared to modify the impact of increased rainfall on cryptosporidiosis rates. This finding suggests that improving water supply quality in New Zealand could reduce vulnerability to the impact of climate change on protozoan diseases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wh.2010.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wh.2010.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Aparna Lal; Simon Hales; Nigel P. French; Michael G Baker;pmid: 23219188
Global climate change will affect the viability and spread of zoonotic parasites, while agricultural land use changes will influence infection sources and reservoirs. The health impact of these environmental changes will depend on the social, economic and physical resilience of the population. This review describes the influence of climatic variability, land-use changes, and social factors on cryptosporidiosis and giardiasis in humans. Global to public health to individual-level interventions to reduce future disease burden are highlighted. Because future environmental change is expected to have the greatest health impacts in countries with limited resources, increasing research and adaptation capabilities in these regions is emphasized. Understanding how environmental and social processes interact to influence disease transmission is essential for the development of effective strategies for disease prevention.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pt.2012.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pt.2012.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors: Lucy Telfar-Barnard; Michael G. Baker; Nick Wilson; Philippa Howden-Chapman;AbstractExcess winter mortality (EWM) has been used as a measure of how well populations and policy moderate the health effects of cold weather. We aimed to investigate long-term changes in the EWM of Aotearoa New Zealand (NZ), and potential drivers of change, and to test for structural breaks in trends. We calculated NZ EWM indices from 1876 (4,698 deaths) to 2020 (33,310 deaths), total and by age-group and sex, comparing deaths from June to September (the coldest months) to deaths from February to May and October to January. The mean age and sex-standardised EWM Index (EWMI) for the full study period, excluding 1918, was 1.22. However, mean EWMI increased from 1.20 for 1886 to 1917, to 1.34 for the 1920s, then reduced over time to 1.14 in the 2010s, with excess winter deaths averaging 4.5% of annual deaths (1,450 deaths per year) in the 2010s, compared to 7.9% in the 1920s. Children under 5 years transitioned from a summer to winter excess between 1886 and 1911. Otherwise, the EWMI age-distribution was J-shaped in all time periods. Structural break testing showed the 1918 influenza pandemic strain had a significant impact on trends in winter and non-winter mortality and winter excess for subsequent decades. It was not possible to attribute the post-1918 reduction in EWM to any single factor among improved living standards, reduced severe respiratory infections, or climate change.
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-023-02573-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-023-02573-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 AustraliaPublisher:MDPI AG Sherif E. Ammar; Mary Mclntyre; Tom Swan; Julia Kasper; José G. B. Derraik; Michael G. Baker; Simon Hales;Mosquito vectors are extending their range via international travel and trade. Climate change makes New Zealand an increasingly suitable environment for less tropically adapted exotic mosquito vectors to become established. This shift will add a multiplier effect to existing risks of both the establishment of new species and of resident exotic species extending into new areas. We describe trends in the border interceptions of exotic mosquitoes and evaluate the role of imported goods as a pathway for these introductions. Ae. aegypti and Ae. albopictus, the two most commonly intercepted species, were only intercepted in Auckland. Used tyres and machinery were the main mode of entry for both species. The majority of Ae. albopictus were transported as larvae by sea, while most Ae. aegypti were transported as adults by air. Continuing introductions of these mosquitoes, mainly arriving via Japan or Australia, increase the risk of the local transmission of mosquito-borne diseases in New Zealand in general and in the Auckland region in particular. These findings reinforce the need for a high performing and adequately resourced national biosecurity system, particularly port surveillance and inspection. Recommended biosecurity improvements are described.
Tropical Medicine an... arrow_drop_down Tropical Medicine and Infectious DiseaseOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2414-6366/4/3/101/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3390/tropicalmed4030101Data sources: Bielefeld Academic Search Engine (BASE)Tropical Medicine and Infectious DiseaseArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/tropicalmed4030101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tropical Medicine an... arrow_drop_down Tropical Medicine and Infectious DiseaseOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2414-6366/4/3/101/pdfData sources: Multidisciplinary Digital Publishing InstituteJames Cook University, Australia: ResearchOnline@JCUArticle . 2019Full-Text: https://doi.org/10.3390/tropicalmed4030101Data sources: Bielefeld Academic Search Engine (BASE)Tropical Medicine and Infectious DiseaseArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/tropicalmed4030101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Lal, Aparna; Lill, Adrian W.T.; Mcintyre, Mary; Hales, Simon; Baker, Michael G.; French, Nigel P.;To review the available evidence that examines the association between climatic and agricultural land use factors and the risks of enteric zoonoses in humans and consider information needs and possible pathways of intervention.The electronic databases PubMed, Web of Science and Embase and government websites were searched systematically for published literature that investigated the association of climatic and/or agricultural exposures with the incidence of the four most common enteric zoonotic diseases in New Zealand (campylobacteriosis, salmonellosis, cryptosporidiosis and giardiasis). Results The 16 studies in the review demonstrated significant associations between climate, agricultural land use and enteric disease occurrence. The evidence suggests that enteric disease risk from environmental reservoirs is pathogen specific. In some rural regions, environmental pathogen load is considerable, with multiple opportunities for zoonotic transmission.Enteric disease occurrence in NZ is associated with climate variability and agricultural land use. However, these relationships interact with demographic factors to influence disease patterns.Improved understanding of how environmental and social factors interact can inform effective public health interventions under scenarios of projected environmental change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/13538Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2016Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2015 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/13538Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2016Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2015 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12274&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Simon Hales; Kamalesh Venugopal; Michael G Baker; Emma Britton;pmid: 23331354
To investigate the temporal relationship between the monthly count of salmonellosis notifications and the monthly average temperature in New Zealand during the period 1965-2006.A negative binomial regression model was used to analyse monthly average ambient temperature and salmonellosis notifications in New Zealand between 1965 and 2006.A 1°C increase in monthly average ambient temperature was associated with a 15% increase in salmonellosis notifications within the same month (IRR 1.15; 95% CI 1.07 - 1.24).The positive association found in this study between temperature and salmonellosis notifications in New Zealand is consistent with the results of studies conducted in other countries. New Zealand is projected to experience an increase in temperature due to climate change. Therefore, all other things being equal, climate change could increase salmonellosis notifications in New Zealand.This association between temperature and salmonellosis should be considered when developing public health plans and climate change adaptation policies. Strategically, existing food safety programs to prevent salmonellosis could be intensified during warmer periods. As the association was strongest within the same month, focusing on improving food handling and storage during this time period may assist in climate change adaptation in New Zealand.
Australian and New Z... arrow_drop_down Australian and New Zealand Journal of Public HealthArticle . 2013Data sources: Europe PubMed Centralhttps://doi.org/10.1111/j.1753...Article . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1753-6405.2010.00495.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian and New Z... arrow_drop_down Australian and New Zealand Journal of Public HealthArticle . 2013Data sources: Europe PubMed Centralhttps://doi.org/10.1111/j.1753...Article . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1753-6405.2010.00495.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Lal, Aparna; Ikeda, Takayoshi; French, Nigel P; Baker, Michael; Hales, Simon;Evaluating the influence of climate variability on enteric disease incidence may improve our ability to predict how climate change may affect these diseases.To examine the associations between regional climate variability and enteric disease incidence in New Zealand.Associations between monthly climate and enteric diseases (campylobacteriosis, salmonellosis, cryptosporidiosis, giardiasis) were investigated using Seasonal Auto Regressive Integrated Moving Average (SARIMA) models.No climatic factors were significantly associated with campylobacteriosis and giardiasis, with similar predictive power for univariate and multivariate models. Cryptosporidiosis was positively associated with average temperature of the previous month (β = 0.130, SE = 0.060, p <0.01) and inversely related to the Southern Oscillation Index (SOI) two months previously (β = -0.008, SE = 0.004, p <0.05). By contrast, salmonellosis was positively associated with temperature (β = 0.110, SE = 0.020, p<0.001) of the current month and SOI of the current (β = 0.005, SE = 0.002, p<0.050) and previous month (β = 0.005, SE = 0.002, p<0.05). Forecasting accuracy of the multivariate models for cryptosporidiosis and salmonellosis were significantly higher.Although spatial heterogeneity in the observed patterns could not be assessed, these results suggest that temporally lagged relationships between climate variables and national communicable disease incidence data can contribute to disease prediction models and early warning systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0083484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0083484&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 AustraliaPublisher:Walter de Gruyter GmbH Nick Wilson; David Slaney; Simon Hales; Michael G Baker; Emma Britton;To review the literature on infectious diseases and meteorological and climate change risk factors in the New Zealand context and to describe a tentative research agenda for future work.We performed literature searches in May 2010 using Medline and Google Scholar. We also searched five health-related government agencies in New Zealand for documentation on climate change and health.The effect of climate variability and change on vector-borne disease has been considered in more detail than any other infectious disease topic (n=20+ journal articles and reports relating to New Zealand). Generally, concern has arisen around the risk of new mosquito incursions and increased risks of dengue and Ross River fevers in the long term. For enteric diseases, the picture from five New Zealand publications is somewhat mixed, although the data indicate that salmonellosis notifications increase with higher monthly temperatures. One interpretation of the New Zealand data is that communities without reticulated water supplies could be more vulnerable to the effects of climate change-mediated increases in protozoan diseases. This information informed a tentative research agenda to address research gaps. Priorities include the need for further work on a more integrated surveillance framework, vector-borne diseases, enteric diseases, skin infections, and then work on topics for which we found no published New Zealand work (such as influenza and leptospirosis). Finally, we found that health-related government agencies in New Zealand have relatively little 'climate change and health' information on their websites.Although some informative work has been done to date, much scope remains for additional research and planning to facilitate prevention, mitigation, and adaptation responses in the New Zealand setting around climate change and infectious disease risks. The tentative research agenda produced could benefit from a wider critique, and government agencies in New Zealand could contribute to informed discussions by better documenting the current state of knowledge on their websites.
Reviews on Environme... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/reveh.2011.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Reviews on Environme... arrow_drop_down UniSA Research Outputs RepositoryArticle . 2011 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/reveh.2011.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Elsevier BV Lal, Aparna; Hales, Simon; Baker, Michael; French, Nigel P; Kirk, Martyn;Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch).Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends.Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington.Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98500Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2017Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/98500Data sources: Bielefeld Academic Search Engine (BASE)Australian and New Zealand Journal of Public HealthArticle . 2017Data sources: Europe PubMed Centralhttps://doi.org/10.1111/1753-6...Article . 2016 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1753-6405.12413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:IWA Publishing Authors: Emma Britton; Simon Hales; Michael G Baker; Kamalesh Venugopal;doi: 10.2166/wh.2010.049
pmid: 20375485
Aim: To investigate the spatial relationship between climate variability and cryptosporidiosis and giardiasis notifications in New Zealand between 1997 and 2006. Methods: Negative binomial regression was used to analyse spatial relationships between cryptosporidiosis and giardiasis notifications in New Zealand between 1997 and 2006, and climatological average rainfall and temperature at the Census Area Unit (CAU) level. The quality of domestic water supplies, urban-rural status and deprivation were included as covariates. Main results: Giardiasis: There was a positive association between rainfall and giardiasis and between temperature and giardiasis. Cryptosporidiosis: There was a positive association between rainfall and cryptosporidiosis and a negative association between temperature and cryptosporidiosis. The effect of rainfall was modified by the quality of the domestic water supply. Conclusions: These findings suggest that climate variability affects protozoan disease rates in New Zealand. However, predicting the effect of climate change from this study is difficult, as these results suggest that the projected increases in temperature and rainfall may have opposing effects on cryptosporidiosis rates. Nevertheless, water supply quality appeared to modify the impact of increased rainfall on cryptosporidiosis rates. This finding suggests that improving water supply quality in New Zealand could reduce vulnerability to the impact of climate change on protozoan diseases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wh.2010.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wh.2010.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Aparna Lal; Simon Hales; Nigel P. French; Michael G Baker;pmid: 23219188
Global climate change will affect the viability and spread of zoonotic parasites, while agricultural land use changes will influence infection sources and reservoirs. The health impact of these environmental changes will depend on the social, economic and physical resilience of the population. This review describes the influence of climatic variability, land-use changes, and social factors on cryptosporidiosis and giardiasis in humans. Global to public health to individual-level interventions to reduce future disease burden are highlighted. Because future environmental change is expected to have the greatest health impacts in countries with limited resources, increasing research and adaptation capabilities in these regions is emphasized. Understanding how environmental and social processes interact to influence disease transmission is essential for the development of effective strategies for disease prevention.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pt.2012.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pt.2012.10.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Springer Science and Business Media LLC Authors: Lucy Telfar-Barnard; Michael G. Baker; Nick Wilson; Philippa Howden-Chapman;AbstractExcess winter mortality (EWM) has been used as a measure of how well populations and policy moderate the health effects of cold weather. We aimed to investigate long-term changes in the EWM of Aotearoa New Zealand (NZ), and potential drivers of change, and to test for structural breaks in trends. We calculated NZ EWM indices from 1876 (4,698 deaths) to 2020 (33,310 deaths), total and by age-group and sex, comparing deaths from June to September (the coldest months) to deaths from February to May and October to January. The mean age and sex-standardised EWM Index (EWMI) for the full study period, excluding 1918, was 1.22. However, mean EWMI increased from 1.20 for 1886 to 1917, to 1.34 for the 1920s, then reduced over time to 1.14 in the 2010s, with excess winter deaths averaging 4.5% of annual deaths (1,450 deaths per year) in the 2010s, compared to 7.9% in the 1920s. Children under 5 years transitioned from a summer to winter excess between 1886 and 1911. Otherwise, the EWMI age-distribution was J-shaped in all time periods. Structural break testing showed the 1918 influenza pandemic strain had a significant impact on trends in winter and non-winter mortality and winter excess for subsequent decades. It was not possible to attribute the post-1918 reduction in EWM to any single factor among improved living standards, reduced severe respiratory infections, or climate change.
International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-023-02573-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of BiometeorologyArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00484-023-02573-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu