- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SingaporePublisher:Institute of Electrical and Electronics Engineers (IEEE) Virasawmy, S.; Palina, N.; Widenborg, P.I.; Kumar, A.; Dalapati, G.K.; Tan, H.R.; Tay, A.A.O.; Hoex, B.;Laser chemical processing (LCP) is an attractive doping technique for thin films due to its process simplicity, high achievable doping concentrations, and relatively shallow doping depths. During LCP processing, an infinite supply of dopants is available from the pressurized doping medium. In this paper, LCP is employed for n-type doping of poly-silicon thin films on glass. We achieved a peak doping concentration of 6 × 1018 to 1 × 1019 cm-3 and a junction depth up to 350 nm, as determined by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. We evaluate the structural quality of the LCP-doped layers with cross-sectional transmission electron microscopy (XTEM), as well as ultraviolet reflectance measurements. The LCP-doped regions are of suitable material quality for device fabrication. The resulting sheet resistance and doping levels are promising for a back surface field for poly-silicon thin-film solar cells on glass (e.g., an n+/ n-/ p+/glass layer structure in superstrate configuration).
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2278662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2278662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV D. Sarangi; Armin G. Aberle; S. Vinodh; Matthew Benjamin Boreland; Prabir Basu; Shubham Duttagupta; Kishan Devappa Shetty; Jia Chen; N. Palina; Zheren Du; Bram Hoex; Fen Lin;AbstractPresently, large-area high-efficiency (> 19%) screen printed p-type silicon solar cells are dominated by the aluminium local back surface field (Al-LBSF) technology. However, all those cells were fabricated with tube diffused emitters. Inline diffusion, using phosphoric acid as the dopant source, offers potentially low-cost emitter formation for p-type silicon wafer solar cells. To achieve higher efficiencies for these solar cells, the authors have applied a new Si etch solution to remove the dead layer of the inline diffused emitter. Efficiencies up to 18.3% were obtained for standard Al back surface field (Al-BSF) solar cells. In this work, the same etch-back process was applied to Al-LBSF devices. We report a maximum efficiency of 19.0%, an average batch efficiency of 18.9% (± 0.1% StDev), and a maximum open-circuit voltage of 640mV for the cells, using industry-grade p-type 6 inch wide pseudosquare Cz mono-Si wafers. These results indicate that inline-diffused emitters can be used in high-efficiency silicon wafer solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Shaozhou Wang; Giuseppe Scardera; Fa-Jun Ma; Yu Zhang; David Payne; Malcolm Abbott; Bram Hoex;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3148713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3148713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Nasim Sahraei; Ian Marius Peters; Zhe Liu; Armin G. Aberle; Bram Hoex;In this study, we propose a geometric optical model to represent alkaline saw-damage-etched (SDE) surfaces of monocrystalline silicon wafers. An experimental study is carried out to characterize the optical properties of alkaline SDE surfaces on monocrystalline silicon wafers. Based on the surface characteristics measured by goniometry and height profiling, a geometric optical model is developed to describe the SDE surface with two parameters: characteristic angle and planar fraction. Using the path-tracing method, spectral reflectance simulations are carried out for four different types of samples. With the measured characteristic angle of 22° and planar fraction of 0.25 or 0.36, we find that this representation of SDE surface can predict the reflection and transmission with a root-mean-square error (RMSE) of the equivalent current density from 0.19 to 0.57 mA/cm 2 . The developed model is also applied to the optical loss analysis of aluminum local back surface field (Al-LBSF) solar cells with an SDE rear surface. We find that SDE rear surfaces provide better light trapping than planar surfaces. As a consequence, Al-LBSF solar cells with pyramids on the front and an SDE rear are predicted to produce 0.6 mA/cm 2 more photocurrent than similar cells with a planar rear surface.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2349657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2349657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SingaporePublisher:Institute of Electrical and Electronics Engineers (IEEE) Duttagupta, S.; Ma, F.-J.; Lin, S.F.; Mueller, T.; Aberle, A.G.; Hoex, B.;We report an outstanding level of surface passivation for both n+ and p+ silicon by AlOx/SiNx dielectric stacks deposited in an inline plasma-enhanced chemical vapor deposition (PECVD) reactor for a wide range of sheet resistances. Extremely low emitter saturation current densities (J0e) of 12 and 200 fA/cm2 are obtained on 165 and 25 Ω/sq n+ emitters, respectively, and 8 and 45 fA/cm2 on 170 and 30 Ω/sq p+ emitters, respectively. Using contactless corona-voltage measurements and device simulations, we demonstrate that the surface passivation mechanism on both n+ and p + silicon is primarily due to a relatively low interface defect density of <;1011 eV-1cm-2 in combination with a moderate fixed negative charge density of (1-2) × 1012 cm-2. From advanced modeling, the fundamental surface recombination velocity parameter is shown to be in the order of 104 cm/s for PECVD AlOx/SiNx passivated heavily doped n+ and p+ silicon surfaces.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2270350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2270350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dirk Landgraf; Bram Hoex; Thomas Grosse; Shubham Duttagupta; Armin G. Aberle; Ziv Hameiri;State-of-the-art surface passivation results are obtained on undiffused p-type commercial-grade Czochralski Si wafers with effective surface recombination velocity S eff values of ∼8 cm/s and implied open-circuit voltage iV oc values of up to 715 mV with an industrially fired dielectric stack of silicon oxide and silicon nitride (SiO ${}_x$ /SiN ${}_x$ ) deposited in an industrial inline plasma-enhanced chemical vapor deposition reactor. We are able to controllably vary the total positive charge density Q total in the stack by more than one order of magnitude (1011–10 12 cm−2) with no impact on midgap interface state density D it,midgap (5 × 1011 eV−1·cm−2) by altering the deposition temperature of the SiO ${}_x$ layer in the stack. We show experimentally that, for inversion conditions, S eff scales with the inverse square of the charge density $1/Q_{{\rm total}}^2$ , which is in good agreement with theory. Based on the measured injection-level–dependent minority carrier lifetimes and the total positive charge densities, it is shown that films with higher positive charge density have higher 1-sun V oc and fill factor ( FF ) potential. Large-area alloyed aluminum local back surface field solar cells confirmed this by showing higher conversion efficiency by 0.17% absolute due to improved cell V oc and FF of the solar cells featuring a SiO ${}_x$ /SiN ${}_x$ stack with a higher Q total.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2419132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2419132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Xin Cui; Kaiwen Sun; Jialiang Huang; Jae S. Yun; Chang-Yeh Lee; Chang Yan; Heng Sun; Yuanfang Zhang; Chaowei Xue; Katja Eder; Limei Yang; Julie M. Cairney; Jan Seidel; N. J. Ekins-Daukes; Martin Green; Bram Hoex; Xiaojing Hao;doi: 10.1039/c9ee01726g
Cd-Free CZTS solar cell with above 10% efficiency was achieved by an Al2O3passivation layer prepared by ALD.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01726g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01726g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Linkage Projects - Grant ID: LP210200883 ,ARC| Discovery Projects - Grant ID: DP220101532 ,ARC| Discovery Projects - Grant ID: DP170102677 ,ARC| Linkage Projects - Grant ID: LP210100426Guo Li; Zhuangyi Zhou; Chukwuka Madumelu; Peter Toth; Lennart van den Hengel; Ferdinand Grozema; Gavin Conibeer; Bram Hoex;Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2025.113729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2025.113729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 NetherlandsPublisher:IEEE Authors: Bram Hoex; Wilhelmus M. M. Kessels; Michel Bosman; Naomi Nandakumar;In this work the mechanism of c-Si surface passivation by Al 2O3 films is studied in detail by means of spatially resolved electron energy loss spectroscopy (EELS). The bonding configuration of Al and O is studied in as-deposited and annealed Al2O3 films grown on c-Si substrates by plasma-assisted and thermal atomic layer deposition (ALD). The ratio of tetrahedrally and octahedrally coordinated Al is found to increase after annealing, especially for the plasmaassisted ALD sample. The increase is strongest close to the c-Si/Al2O3 interface and thus these results strongly support tetrahedrally coordinated Al as the origin for the negative fixed charge in Al2O3.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2013Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6745164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2013Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6745164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Shaozhou Wang; Xinyuan Wu; Fa-Jun Ma; David Payne; Malcolm Abbott; Bram Hoex;Black silicon (b-Si) surfaces typically have a high density of extreme nanofeatures and a significantly large surface area. This makes high-quality surface passivation even more critical for devices such as solar cells with b-Si surfaces. It has been hypothesized that conformal dielectrics with a high fixed charge density ( ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ ) are preferred as the nanoscale features of b-Si result in a significant enhancement of field-effect passivation. This article uses 1-D, 2-D, and 3-D numerical simulations to study surface passivation of b-Si, where we particularly focus on the charge carrier control by | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | up to 1 × 1013 cm−2 under accumulation conditions. We will show that there is a significant space charge region compression in b-Si nanofeatures, which affects the charge carrier population control for moderate | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | up to a1 × 1012 cm−2. The average surface minority charge carrier density can be reduced by 70% in some cases, resulting in an equivalent reduction in area-normalized surface recombination losses if the effective surface recombination velocity ( ${{\boldsymbol{S}}_{{\rm{eff}}}}$ ) is limited by minority carriers. This provides a possible solution for the empirical ${{\boldsymbol{S}}_{{\rm{eff}}}} \propto 1/{\boldsymbol{Q}}_{\boldsymbol{f}}^4$ reported previously. We will also show that the situation is more complicated for surface passivation films where the ratio between the electron and hole capture cross section ( ${{\boldsymbol{\sigma }}_{\boldsymbol{n}}}$ / ${{\boldsymbol{\sigma }}_{\boldsymbol{p}}}$ ) is higher than 10 for p -type surfaces. For commonly used surface passivation films with a | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | larger than a1 × 1012 cm−2, there is little space charge compression for b-Si. Consequently, ${{\boldsymbol{S}}_{{\rm{eff}}}}$ simply scales with the surface area, i.e., there is no enhanced reduction of surface recombination by field-effect passivation on b-Si.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3069124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3069124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 SingaporePublisher:Institute of Electrical and Electronics Engineers (IEEE) Virasawmy, S.; Palina, N.; Widenborg, P.I.; Kumar, A.; Dalapati, G.K.; Tan, H.R.; Tay, A.A.O.; Hoex, B.;Laser chemical processing (LCP) is an attractive doping technique for thin films due to its process simplicity, high achievable doping concentrations, and relatively shallow doping depths. During LCP processing, an infinite supply of dopants is available from the pressurized doping medium. In this paper, LCP is employed for n-type doping of poly-silicon thin films on glass. We achieved a peak doping concentration of 6 × 1018 to 1 × 1019 cm-3 and a junction depth up to 350 nm, as determined by electrochemical capacitance-voltage profiling and secondary ion mass spectrometry. We evaluate the structural quality of the LCP-doped layers with cross-sectional transmission electron microscopy (XTEM), as well as ultraviolet reflectance measurements. The LCP-doped regions are of suitable material quality for device fabrication. The resulting sheet resistance and doping levels are promising for a back surface field for poly-silicon thin-film solar cells on glass (e.g., an n+/ n-/ p+/glass layer structure in superstrate configuration).
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2278662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2278662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV D. Sarangi; Armin G. Aberle; S. Vinodh; Matthew Benjamin Boreland; Prabir Basu; Shubham Duttagupta; Kishan Devappa Shetty; Jia Chen; N. Palina; Zheren Du; Bram Hoex; Fen Lin;AbstractPresently, large-area high-efficiency (> 19%) screen printed p-type silicon solar cells are dominated by the aluminium local back surface field (Al-LBSF) technology. However, all those cells were fabricated with tube diffused emitters. Inline diffusion, using phosphoric acid as the dopant source, offers potentially low-cost emitter formation for p-type silicon wafer solar cells. To achieve higher efficiencies for these solar cells, the authors have applied a new Si etch solution to remove the dead layer of the inline diffused emitter. Efficiencies up to 18.3% were obtained for standard Al back surface field (Al-BSF) solar cells. In this work, the same etch-back process was applied to Al-LBSF devices. We report a maximum efficiency of 19.0%, an average batch efficiency of 18.9% (± 0.1% StDev), and a maximum open-circuit voltage of 640mV for the cells, using industry-grade p-type 6 inch wide pseudosquare Cz mono-Si wafers. These results indicate that inline-diffused emitters can be used in high-efficiency silicon wafer solar cells.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2012.07.091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institute of Electrical and Electronics Engineers (IEEE) Shaozhou Wang; Giuseppe Scardera; Fa-Jun Ma; Yu Zhang; David Payne; Malcolm Abbott; Bram Hoex;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3148713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2022.3148713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Institute of Electrical and Electronics Engineers (IEEE) Nasim Sahraei; Ian Marius Peters; Zhe Liu; Armin G. Aberle; Bram Hoex;In this study, we propose a geometric optical model to represent alkaline saw-damage-etched (SDE) surfaces of monocrystalline silicon wafers. An experimental study is carried out to characterize the optical properties of alkaline SDE surfaces on monocrystalline silicon wafers. Based on the surface characteristics measured by goniometry and height profiling, a geometric optical model is developed to describe the SDE surface with two parameters: characteristic angle and planar fraction. Using the path-tracing method, spectral reflectance simulations are carried out for four different types of samples. With the measured characteristic angle of 22° and planar fraction of 0.25 or 0.36, we find that this representation of SDE surface can predict the reflection and transmission with a root-mean-square error (RMSE) of the equivalent current density from 0.19 to 0.57 mA/cm 2 . The developed model is also applied to the optical loss analysis of aluminum local back surface field (Al-LBSF) solar cells with an SDE rear surface. We find that SDE rear surfaces provide better light trapping than planar surfaces. As a consequence, Al-LBSF solar cells with pyramids on the front and an SDE rear are predicted to produce 0.6 mA/cm 2 more photocurrent than similar cells with a planar rear surface.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2349657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2014 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2014.2349657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SingaporePublisher:Institute of Electrical and Electronics Engineers (IEEE) Duttagupta, S.; Ma, F.-J.; Lin, S.F.; Mueller, T.; Aberle, A.G.; Hoex, B.;We report an outstanding level of surface passivation for both n+ and p+ silicon by AlOx/SiNx dielectric stacks deposited in an inline plasma-enhanced chemical vapor deposition (PECVD) reactor for a wide range of sheet resistances. Extremely low emitter saturation current densities (J0e) of 12 and 200 fA/cm2 are obtained on 165 and 25 Ω/sq n+ emitters, respectively, and 8 and 45 fA/cm2 on 170 and 30 Ω/sq p+ emitters, respectively. Using contactless corona-voltage measurements and device simulations, we demonstrate that the surface passivation mechanism on both n+ and p + silicon is primarily due to a relatively low interface defect density of <;1011 eV-1cm-2 in combination with a moderate fixed negative charge density of (1-2) × 1012 cm-2. From advanced modeling, the fundamental surface recombination velocity parameter is shown to be in the order of 104 cm/s for PECVD AlOx/SiNx passivated heavily doped n+ and p+ silicon surfaces.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2270350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2013 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2013.2270350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Institute of Electrical and Electronics Engineers (IEEE) Dirk Landgraf; Bram Hoex; Thomas Grosse; Shubham Duttagupta; Armin G. Aberle; Ziv Hameiri;State-of-the-art surface passivation results are obtained on undiffused p-type commercial-grade Czochralski Si wafers with effective surface recombination velocity S eff values of ∼8 cm/s and implied open-circuit voltage iV oc values of up to 715 mV with an industrially fired dielectric stack of silicon oxide and silicon nitride (SiO ${}_x$ /SiN ${}_x$ ) deposited in an industrial inline plasma-enhanced chemical vapor deposition reactor. We are able to controllably vary the total positive charge density Q total in the stack by more than one order of magnitude (1011–10 12 cm−2) with no impact on midgap interface state density D it,midgap (5 × 1011 eV−1·cm−2) by altering the deposition temperature of the SiO ${}_x$ layer in the stack. We show experimentally that, for inversion conditions, S eff scales with the inverse square of the charge density $1/Q_{{\rm total}}^2$ , which is in good agreement with theory. Based on the measured injection-level–dependent minority carrier lifetimes and the total positive charge densities, it is shown that films with higher positive charge density have higher 1-sun V oc and fill factor ( FF ) potential. Large-area alloyed aluminum local back surface field solar cells confirmed this by showing higher conversion efficiency by 0.17% absolute due to improved cell V oc and FF of the solar cells featuring a SiO ${}_x$ /SiN ${}_x$ stack with a higher Q total.
IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2419132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2015 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2015.2419132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of)Publisher:Royal Society of Chemistry (RSC) Xin Cui; Kaiwen Sun; Jialiang Huang; Jae S. Yun; Chang-Yeh Lee; Chang Yan; Heng Sun; Yuanfang Zhang; Chaowei Xue; Katja Eder; Limei Yang; Julie M. Cairney; Jan Seidel; N. J. Ekins-Daukes; Martin Green; Bram Hoex; Xiaojing Hao;doi: 10.1039/c9ee01726g
Cd-Free CZTS solar cell with above 10% efficiency was achieved by an Al2O3passivation layer prepared by ALD.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01726g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ee01726g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Linkage Projects - Grant ID: LP210200883 ,ARC| Discovery Projects - Grant ID: DP220101532 ,ARC| Discovery Projects - Grant ID: DP170102677 ,ARC| Linkage Projects - Grant ID: LP210100426Guo Li; Zhuangyi Zhou; Chukwuka Madumelu; Peter Toth; Lennart van den Hengel; Ferdinand Grozema; Gavin Conibeer; Bram Hoex;Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2025.113729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2025.113729&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2013 NetherlandsPublisher:IEEE Authors: Bram Hoex; Wilhelmus M. M. Kessels; Michel Bosman; Naomi Nandakumar;In this work the mechanism of c-Si surface passivation by Al 2O3 films is studied in detail by means of spatially resolved electron energy loss spectroscopy (EELS). The bonding configuration of Al and O is studied in as-deposited and annealed Al2O3 films grown on c-Si substrates by plasma-assisted and thermal atomic layer deposition (ALD). The ratio of tetrahedrally and octahedrally coordinated Al is found to increase after annealing, especially for the plasmaassisted ALD sample. The increase is strongest close to the c-Si/Al2O3 interface and thus these results strongly support tetrahedrally coordinated Al as the origin for the negative fixed charge in Al2O3.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2013Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6745164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2013Data sources: DANS (Data Archiving and Networked Services)Eindhoven University of Technology Research PortalConference object . 2013Data sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc.2013.6745164&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Shaozhou Wang; Xinyuan Wu; Fa-Jun Ma; David Payne; Malcolm Abbott; Bram Hoex;Black silicon (b-Si) surfaces typically have a high density of extreme nanofeatures and a significantly large surface area. This makes high-quality surface passivation even more critical for devices such as solar cells with b-Si surfaces. It has been hypothesized that conformal dielectrics with a high fixed charge density ( ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ ) are preferred as the nanoscale features of b-Si result in a significant enhancement of field-effect passivation. This article uses 1-D, 2-D, and 3-D numerical simulations to study surface passivation of b-Si, where we particularly focus on the charge carrier control by | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | up to 1 × 1013 cm−2 under accumulation conditions. We will show that there is a significant space charge region compression in b-Si nanofeatures, which affects the charge carrier population control for moderate | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | up to a1 × 1012 cm−2. The average surface minority charge carrier density can be reduced by 70% in some cases, resulting in an equivalent reduction in area-normalized surface recombination losses if the effective surface recombination velocity ( ${{\boldsymbol{S}}_{{\rm{eff}}}}$ ) is limited by minority carriers. This provides a possible solution for the empirical ${{\boldsymbol{S}}_{{\rm{eff}}}} \propto 1/{\boldsymbol{Q}}_{\boldsymbol{f}}^4$ reported previously. We will also show that the situation is more complicated for surface passivation films where the ratio between the electron and hole capture cross section ( ${{\boldsymbol{\sigma }}_{\boldsymbol{n}}}$ / ${{\boldsymbol{\sigma }}_{\boldsymbol{p}}}$ ) is higher than 10 for p -type surfaces. For commonly used surface passivation films with a | ${{\boldsymbol{Q}}_{\boldsymbol{f}}}$ | larger than a1 × 1012 cm−2, there is little space charge compression for b-Si. Consequently, ${{\boldsymbol{S}}_{{\rm{eff}}}}$ simply scales with the surface area, i.e., there is no enhanced reduction of surface recombination by field-effect passivation on b-Si.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3069124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2021.3069124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu